BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25826369)

  • 21. Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants.
    Huang YJ; Paillard S; Kumar V; King GJ; Fitt BDL; Delourme R
    PLoS One; 2019; 14(9):e0222540. PubMed ID: 31513677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complexity of
    Macioszek VK; Gapińska M; Zmienko A; Sobczak M; Skoczowski A; Oliwa J; Kononowicz AK
    Cells; 2020 Oct; 9(10):. PubMed ID: 33092216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana.
    Cramer RA; Lawrence CB
    Fungal Genet Biol; 2004 Feb; 41(2):115-28. PubMed ID: 14732258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Detection of
    Cao F; Liu F; Guo H; Kong W; Zhang C; He Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30562959
    [No Abstract]   [Full Text] [Related]  

  • 25. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus).
    Jacott CN; Schoonbeek HJ; Sidhu GS; Steuernagel B; Kirby R; Zheng X; von Tiedermann A; Macioszek VK; Kononowicz AK; Fell H; Fitt BDL; Mitrousia GK; Stotz HU; Ridout CJ; Wells R
    Theor Appl Genet; 2024 Mar; 137(3):65. PubMed ID: 38430276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging].
    Zhang XL; Liu F; Nie PC; He Y; Bao YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2513-8. PubMed ID: 25532355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens.
    Granér G; Hamberg M; Meijer J
    Phytochemistry; 2003 May; 63(1):89-95. PubMed ID: 12657302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).
    Ru C; Li Z; Tang R
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First Report of Gray Leaf Spot Caused by Alternaria brassicae on Canola in Argentina.
    Gaetán S; Madia M
    Plant Dis; 2005 Feb; 89(2):207. PubMed ID: 30795237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Visible and Near-Infrared Hyperspectral Imaging to Determine Soluble Protein Content in Oilseed Rape Leaves.
    Zhang C; Liu F; Kong W; He Y
    Sensors (Basel); 2015 Jul; 15(7):16576-88. PubMed ID: 26184198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First report of a Panax notoginseng leaf disease caused by Alternaria alternata in China.
    Liang T; Li X; Li Y; Cui X; Liu D
    Plant Dis; 2022 Nov; ():. PubMed ID: 36320130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and 'Green Islands' Formation in
    Macioszek VK; Sobczak M; Skoczowski A; Oliwa J; Michlewska S; Gapińska M; Ciereszko I; Kononowicz AK
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus).
    Dong X; Ji R; Guo X; Foster SJ; Chen H; Dong C; Liu Y; Hu Q; Liu S
    Planta; 2008 Jul; 228(2):331-40. PubMed ID: 18446363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage.
    Feigl G; Kumar D; Lehotai N; Pető A; Molnár Á; Rácz É; Ördög A; Erdei L; Kolbert Z; Laskay G
    Acta Biol Hung; 2015 Jun; 66(2):205-21. PubMed ID: 26081276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaf position-dependent effect of Alternaria brassicicola development on host cell death, photosynthesis and secondary metabolites in Brassica juncea.
    Macioszek VK; Wielanek M; Morkunas I; Ciereszko I; Kononowicz AK
    Physiol Plant; 2020 Mar; 168(3):601-616. PubMed ID: 31145472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus).
    Verma SS; Yajima WR; Rahman MH; Shah S; Liu JJ; Ekramoddoullah AK; Kav NN
    Plant Mol Biol; 2012 May; 79(1-2):61-74. PubMed ID: 22351159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing quantitative resistance against Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) in young plants.
    Huang YJ; Qi A; King GJ; Fitt BD
    PLoS One; 2014; 9(1):e84924. PubMed ID: 24454767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection.
    Girard IJ; Tong C; Becker MG; Mao X; Huang J; de Kievit T; Fernando WGD; Liu S; Belmonte MF
    J Exp Bot; 2017 Nov; 68(18):5079-5091. PubMed ID: 29036633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TOWARDS THE SELECTION IN VITRO FOR RESISTANCE TO ALTERNARIA BRASSICICOLA (SCHW.) WILTS., IN BRASSICA NAPUS SSP. OLEIFERA (METZG.) SINSK., WINTER OILSEED RAPE.
    Macdonald MV; Ingram DS
    New Phytol; 1986 Dec; 104(4):621-629. PubMed ID: 33873863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First Report of Xanthomonas campestris pv. campestris as the Causal Agent of Black Rot on Oilseed Rape (Brassica napus) in Serbia.
    Popović T; Balaž J; Starović M; Trkulja N; Ivanović Ž; Ignjatov M; Jošić D
    Plant Dis; 2013 Mar; 97(3):418. PubMed ID: 30722394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.