BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 25826666)

  • 21. Macrolactin F inhibits RANKL-mediated osteoclastogenesis by suppressing Akt, MAPK and NFATc1 pathways and promotes osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling pathway.
    Li L; Sapkota M; Gao M; Choi H; Soh Y
    Eur J Pharmacol; 2017 Nov; 815():202-209. PubMed ID: 28919027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cafestol has a weaker inhibitory effect on osteoclastogenesis than kahweol and promotes osteoblast differentiation.
    Fukuma Y; Sakai E; Nishishita K; Okamoto K; Tsukuba T
    Biofactors; 2015; 41(4):222-31. PubMed ID: 26154488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-124 regulates osteoclast differentiation.
    Lee Y; Kim HJ; Park CK; Kim YG; Lee HJ; Kim JY; Kim HH
    Bone; 2013 Oct; 56(2):383-9. PubMed ID: 23867221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpressed miR-145 inhibits osteoclastogenesis in RANKL-induced bone marrow-derived macrophages and ovariectomized mice by regulation of Smad3.
    Yu FY; Xie CQ; Sun JT; Peng W; Huang XW
    Life Sci; 2018 Jun; 202():11-20. PubMed ID: 29577879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BSP and RANKL induce osteoclastogenesis and bone resorption synergistically.
    Valverde P; Tu Q; Chen J
    J Bone Miner Res; 2005 Sep; 20(9):1669-79. PubMed ID: 16059638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNA-338-3p inhibits glucocorticoid-induced osteoclast formation through RANKL targeting.
    Zhang XH; Geng GL; Su B; Liang CP; Wang F; Bao JC
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3).
    Liu T; Qin AP; Liao B; Shao HG; Guo LJ; Xie GQ; Yang L; Jiang TJ
    Bone; 2014 Oct; 67():156-65. PubMed ID: 25019593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca
    Cao B; Dai X; Wang W
    J Cell Physiol; 2019 May; 234(5):6831-6841. PubMed ID: 30387123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 4-1BB ligand and 4-1BB expressed on osteoclast precursors enhance RANKL-induced osteoclastogenesis via bi-directional signaling.
    Yang J; Park OJ; Lee YJ; Jung HM; Woo KM; Choi Y
    Eur J Immunol; 2008 Jun; 38(6):1598-609. PubMed ID: 18421790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MiR-124 Attenuates Osteoclastogenic Differentiation of Bone Marrow Monocytes Via Targeting Rab27a.
    Tang L; Yin Y; Liu J; Li Z; Lu X
    Cell Physiol Biochem; 2017; 43(4):1663-1672. PubMed ID: 29045940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade.
    Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S
    J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells.
    Zhu G; Chai J; Ma L; Duan H; Zhang H
    Biochem Biophys Res Commun; 2013 Apr; 433(4):526-31. PubMed ID: 23524257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass.
    Mun SH; Won HY; Hernandez P; Aguila HL; Lee SK
    J Bone Miner Res; 2013 Apr; 28(4):948-59. PubMed ID: 23044992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo.
    Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J
    Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TRAF2 is essential for TNF-alpha-induced osteoclastogenesis.
    Kanazawa K; Kudo A
    J Bone Miner Res; 2005 May; 20(5):840-7. PubMed ID: 15824857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors.
    Sugatani T; Alvarez UM; Hruska KA
    J Cell Biochem; 2003 Sep; 90(1):59-67. PubMed ID: 12938156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrine derivate MASM uncovers a novel function for ribosomal protein S5 in osteoclastogenesis and postmenopausal osteoporosis.
    Chen X; Zhi X; Cao L; Weng W; Pan P; Hu H; Liu C; Zhao Q; Zhou Q; Cui J; Su J
    Cell Death Dis; 2017 Sep; 8(9):e3037. PubMed ID: 28880271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-κB, NFATc1 and c-Fos.
    He L; Lee J; Jang JH; Lee SH; Nan MH; Oh BC; Lee SG; Kim HH; Soung NK; Ahn JS; Kim BY
    Bone; 2012 Jun; 50(6):1207-13. PubMed ID: 22484180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.