These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 25826799)
1. Biocatalytic synthesis of C3 chiral building blocks by chloroperoxidase-catalyzed enantioselective halo-hydroxylation and epoxidation in the presence of ionic liquids. Liu Y; Wang Y; Jiang Y; Hu M; Li S; Zhai Q Biotechnol Prog; 2015; 31(3):724-9. PubMed ID: 25826799 [TBL] [Abstract][Full Text] [Related]
2. Ionic liquids as performance additives for electroenzymatic syntheses. Kohlmann C; Greiner L; Leitner W; Wandrey C; Lütz S Chemistry; 2009 Nov; 15(43):11692-700. PubMed ID: 19777513 [TBL] [Abstract][Full Text] [Related]
3. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts. Cokoja M; Reich RM; Wilhelm ME; Kaposi M; Schäffer J; Morris DS; Münchmeyer CJ; Anthofer MH; Markovits II; Kühn FE; Herrmann WA; Jess A; Love JB ChemSusChem; 2016 Jul; 9(14):1773-6. PubMed ID: 27219852 [TBL] [Abstract][Full Text] [Related]
4. Enantiospecificity of chloroperoxidase-catalyzed epoxidation: biased molecular dynamics study of a cis-β-methylstyrene/chloroperoxidase-compound I complex. Morozov AN; D'Cunha C; Alvarez CA; Chatfield DC Biophys J; 2011 Feb; 100(4):1066-75. PubMed ID: 21320452 [TBL] [Abstract][Full Text] [Related]
5. Highly enantioselective oxidation of cis-cyclopropylmethanols to corresponding aldehydes catalyzed by chloroperoxidase. Hu S; Dordick JS J Org Chem; 2002 Jan; 67(1):314-7. PubMed ID: 11777481 [TBL] [Abstract][Full Text] [Related]
6. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Sundaramoorthy M; Terner J; Poulos TL Chem Biol; 1998 Sep; 5(9):461-73. PubMed ID: 9751642 [TBL] [Abstract][Full Text] [Related]
7. Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis. Itoh T Chem Rev; 2017 Aug; 117(15):10567-10607. PubMed ID: 28745876 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of enantiopure glycidol derivatives via a one-pot two-step enzymatic cascade. Liu YC; Liu Y; Wu ZL Org Biomol Chem; 2015 Feb; 13(7):2146-52. PubMed ID: 25531755 [TBL] [Abstract][Full Text] [Related]
14. Biocatalytic approaches for the synthesis of optically pure vic-halohydrins. Xue F; Li C; Xu Q Appl Microbiol Biotechnol; 2021 May; 105(9):3411-3421. PubMed ID: 33851239 [TBL] [Abstract][Full Text] [Related]
15. Ionically tagged iron complex-catalyzed epoxidation of olefins in imidazolium-based ionic liquids. dos Santos MR; Diniz JR; Arouca AM; Gomes AF; Gozzo FC; Tamborim SM; Parize AL; Suarez PA; Neto BA ChemSusChem; 2012 Apr; 5(4):716-26. PubMed ID: 22473642 [TBL] [Abstract][Full Text] [Related]
16. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Rao DHS; Chatterjee A; Padhi SK Org Biomol Chem; 2021 Jan; 19(2):322-337. PubMed ID: 33325956 [TBL] [Abstract][Full Text] [Related]
17. Unusual propargylic oxidations catalyzed by chloroperoxidase. Hu S; Hager LP Biochem Biophys Res Commun; 1998 Dec; 253(2):544-6. PubMed ID: 9878571 [TBL] [Abstract][Full Text] [Related]
18. Vanadium-catalyzed asymmetric epoxidation of allylic alcohols in water. Malkov AV; Czemerys L; Malyshev DA J Org Chem; 2009 May; 74(9):3350-5. PubMed ID: 19344136 [TBL] [Abstract][Full Text] [Related]
19. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Murali Manoj K Biochim Biophys Acta; 2006 Aug; 1764(8):1325-39. PubMed ID: 16870515 [TBL] [Abstract][Full Text] [Related]
20. Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. de Hoog HM; Nallani M; Cornelissen JJ; Rowan AE; Nolte RJ; Arends IW Org Biomol Chem; 2009 Nov; 7(22):4604-10. PubMed ID: 19865695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]