These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25826815)

  • 1. Learning Trajectories for Robot Programing by Demonstration Using a Coordinated Mixture of Factor Analyzers.
    Field M; Stirling D; Pan Z; Naghdy F
    IEEE Trans Cybern; 2016 Mar; 46(3):706-17. PubMed ID: 25826815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory Learning for Robot Programming by Demonstration Using Hidden Markov Model and Dynamic Time Warping.
    Vakanski A; Mantegh I; Irish A; Janabi-Sharifi F
    IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1039-52. PubMed ID: 22411023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental Approach for Behavior Learning Using Primitive Motion Skills.
    Dawood F; Loo CK
    Int J Neural Syst; 2018 May; 28(4):1750038. PubMed ID: 29022403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse control for humanoid robot task recognition.
    Hak S; Mansard N; Stasse O; Laumond JP
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1524-37. PubMed ID: 22552575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
    Shimizu T; Saegusa R; Ikemoto S; Ishiguro H; Metta G
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):1035-47. PubMed ID: 25029488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On learning, representing, and generalizing a task in a humanoid robot.
    Calinon S; Guenter F; Billard A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):286-98. PubMed ID: 17416157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation.
    Ashith Shyam RB; Hao Z; Montanaro U; Dixit S; Rathinam A; Gao Y; Neumann G; Fallah S
    Front Robot AI; 2021; 8():638849. PubMed ID: 34017860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural movement generation using hidden Markov models and principal components.
    Kwon J; Park FC
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1184-94. PubMed ID: 18784005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory classification using switched dynamical hidden Markov models.
    Nascimento JC; Figueiredo M; Marques JS
    IEEE Trans Image Process; 2010 May; 19(5):1338-48. PubMed ID: 20051342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-Body Dynamics-Based Aerial Fall Trajectory Optimization and Landing Control for Humanoid Robot.
    Zuo W; Gao J; Cao J; Xin X; Jin M; Chen X
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.