These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 25827061)
1. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops. Llop J; Gil E; Gallart M; Contador F; Ercilla M Pest Manag Sci; 2016 Mar; 72(3):505-16. PubMed ID: 25827061 [TBL] [Abstract][Full Text] [Related]
2. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Rincón VJ; Grella M; Marucco P; Alcatrão LE; Sanchez-Hermosilla J; Balsari P Sci Total Environ; 2020 Jul; 726():138509. PubMed ID: 32305758 [TBL] [Abstract][Full Text] [Related]
3. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Sánchez-Hermosilla J; Rincón VJ; Páez F; Agüera F; Carvajal F Pest Manag Sci; 2011 Aug; 67(8):942-7. PubMed ID: 21394883 [TBL] [Abstract][Full Text] [Related]
4. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber. Li Y; Li Y; Pan X; Li QX; Chen R; Li X; Pan C; Song J Pest Manag Sci; 2018 Feb; 74(2):448-455. PubMed ID: 28898566 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
6. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Braekman P; Foque D; Messens W; Van Labeke MC; Pieters JG; Nuyttens D Pest Manag Sci; 2010 Feb; 66(2):203-12. PubMed ID: 19834882 [TBL] [Abstract][Full Text] [Related]
7. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814 [TBL] [Abstract][Full Text] [Related]
8. Optimisation of a vertical spray boom for greenhouse spraying applications. Nuyttens D; Windey S; Braekman P; De Moor A; Sonck B Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):905-12. PubMed ID: 15151329 [TBL] [Abstract][Full Text] [Related]
9. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related]
10. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
11. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
12. Deposition and distribution of myclobutanil and tebuconazole in a semidwarf apple orchard by hand-held gun and air-assisted sprayer application. An Q; Li D; Wu Y; Pan C Pest Manag Sci; 2020 Dec; 76(12):4123-4130. PubMed ID: 32578326 [TBL] [Abstract][Full Text] [Related]
13. Potential dermal exposure to operators applying pesticide on greenhouse crops using low-cost equipment. Rincón VJ; Páez FC; Sánchez-Hermosilla J Sci Total Environ; 2018 Jul; 630():1181-1187. PubMed ID: 29554739 [TBL] [Abstract][Full Text] [Related]
14. Application of ultra-low-volume spray for the control of vegetable disease in greenhouse: Investigation of formulation performance and potential dermal exposure. Ma J; Xiang S; Shi Y; Xie X; Chai A; Li L; Li B; Fan T Pest Manag Sci; 2024 Jun; 80(6):2761-2772. PubMed ID: 38314954 [TBL] [Abstract][Full Text] [Related]
15. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
16. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements. Maertens W; Nuyttens D; Sonck B Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947 [TBL] [Abstract][Full Text] [Related]
17. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Wang S; Li X; Nuyttens D; Zhang L; Liu Y; Li X Front Plant Sci; 2023; 14():1018626. PubMed ID: 36818846 [TBL] [Abstract][Full Text] [Related]
18. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.). Grella M; Marucco P; Manzone M; Gallart M; Balsari P Sci Total Environ; 2017 Feb; 578():427-439. PubMed ID: 27836339 [TBL] [Abstract][Full Text] [Related]
19. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
20. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]