BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25827100)

  • 1. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.
    Hwang HT; Jeen SW; Sudicky EA; Illman WA
    J Contam Hydrol; 2015; 177-178():43-53. PubMed ID: 25827100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3.
    Jeen SW; Yang Y; Gui L; Gillham RW
    J Contam Hydrol; 2013 Jan; 144(1):108-21. PubMed ID: 23247400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE.
    Jeen SW; Gillham RW; Blowes DW
    Environ Sci Technol; 2006 Oct; 40(20):6432-7. PubMed ID: 17120576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nitrate in simultaneous removal of nitrate and trichloroethylene by sulfidated zero-valent Iron.
    Hou J; Wang A; Miao L; Wu J; Xing B
    Sci Total Environ; 2022 Jul; 829():154304. PubMed ID: 35304142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron.
    Jeen SW; Mayer KU; Gillham RW; Blowes DW
    Environ Sci Technol; 2007 Feb; 41(4):1432-8. PubMed ID: 17593753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron.
    Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD
    Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of trichloroethylene using iron, bimetals and trimetals.
    Chao KP; Ong SK; Fryzek T; Yuan W; Braida W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1536-42. PubMed ID: 22702813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.
    Bae Y; Kim D; Cho HH; Singhal N; Park JW
    Water Res; 2012 Dec; 46(19):6391-8. PubMed ID: 23040563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Enhancement of Biogenetic Sulfidated Zero-Valent Iron for Trichloroethylene Degradation: Role of Extracellular Polymeric Substances.
    Wang A; Hou J; Tao C; Miao L; Wu J; Xing B
    Environ Sci Technol; 2023 Feb; 57(8):3323-3333. PubMed ID: 36729963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroethylene removal from groundwater in flow-through columns simulating a permeable reactive barrier constructed with plant mulch.
    Shen H; Wilson JT
    Environ Sci Technol; 2007 Jun; 41(11):4077-83. PubMed ID: 17612193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).
    Chang YC; Huang SC; Chen KF
    Water Sci Technol; 2014; 69(11):2357-63. PubMed ID: 24901632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH on dechlorination of trichloroethylene by zero-valent iron.
    Chen JL; Al-Abed SR; Ryan JA; Li Z
    J Hazard Mater; 2001 May; 83(3):243-54. PubMed ID: 11348735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.
    Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X
    Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.