These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress. Duan J; Kodali VK; Gaffrey MJ; Guo J; Chu RK; Camp DG; Smith RD; Thrall BD; Qian WJ ACS Nano; 2016 Jan; 10(1):524-38. PubMed ID: 26700264 [TBL] [Abstract][Full Text] [Related]
6. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Mieyal JJ; Chock PB Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616 [TBL] [Abstract][Full Text] [Related]
7. Protein S-glutathionylation: from current basics to targeted modifications. Popov D Arch Physiol Biochem; 2014 Oct; 120(4):123-30. PubMed ID: 25112365 [TBL] [Abstract][Full Text] [Related]
8. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Shelton MD; Chock PB; Mieyal JJ Antioxid Redox Signal; 2005; 7(3-4):348-66. PubMed ID: 15706083 [TBL] [Abstract][Full Text] [Related]
9. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L; Robinson RA Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938 [TBL] [Abstract][Full Text] [Related]
10. Commentary to Gorelenkova Miller and Mieyal (2015): sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Kato M; Ninomiya H; Maeda M; Tanaka N; Ilmiawati C; Yoshinaga M Arch Toxicol; 2016 Apr; 90(4):1017-8. PubMed ID: 26780347 [TBL] [Abstract][Full Text] [Related]
11. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. Niemeyer BA Adv Exp Med Biol; 2017; 993():99-116. PubMed ID: 28900911 [TBL] [Abstract][Full Text] [Related]
12. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471 [TBL] [Abstract][Full Text] [Related]
13. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins. Conway ME; Coles SJ; Islam MM; Hutson SM Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134 [TBL] [Abstract][Full Text] [Related]
14. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. O'Brian CA; Chu F Free Radic Res; 2005 May; 39(5):471-80. PubMed ID: 16036322 [TBL] [Abstract][Full Text] [Related]
15. The Expanding Landscape of the Thiol Redox Proteome. Yang J; Carroll KS; Liebler DC Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762 [TBL] [Abstract][Full Text] [Related]
16. Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. Cha SJ; Kim H; Choi HJ; Lee S; Kim K Oxid Med Cell Longev; 2017; 2017():2818565. PubMed ID: 29456785 [TBL] [Abstract][Full Text] [Related]
17. Protein Thiol Redox Signaling in Monocytes and Macrophages. Short JD; Downs K; Tavakoli S; Asmis R Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099 [TBL] [Abstract][Full Text] [Related]