These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25827111)

  • 1. Effects of the surface stoichiometry of seeds on GaN layer growth by hydride vapour phase epitaxy.
    Wang B; Zhao ZD; Xu W; Sui YP; Yu GH
    Phys Chem Chem Phys; 2015 May; 17(17):11193-7. PubMed ID: 25827111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Strain in GaN epi-layer grown by hydride vapor phase epitaxy].
    Liu ZH; Xiu XQ; Zhang LL; Zhang R; Zhang YN; Su J; Xie ZL; Liu B; Shan Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2105-8. PubMed ID: 24159856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of InAlGaN layers grown by metal organic vapour phase epitaxy: effects of threading dislocations and inversion domains from the GaN template.
    Ben Ammar H; Minj A; Chauvat MP; Gamarra P; Lacam C; Morales M; Ruterana P
    J Microsc; 2017 Dec; 268(3):269-275. PubMed ID: 28988453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods.
    Kuwan N; Tsukamoto K; Taki W; Horibuchi K; Oki K; Kawaguchi Y; Shibata T; Sawaki N; Hiramatsu K
    J Electron Microsc (Tokyo); 2000; 49(2):331-8. PubMed ID: 11108056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.
    Shih HY; Shiojiri M; Chen CH; Yu SF; Ko CT; Yang JR; Lin RM; Chen MJ
    Sci Rep; 2015 Sep; 5():13671. PubMed ID: 26329829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic hydride vapour phase epitaxy growth of GaN nanowires.
    Seryogin G; Shalish I; Moberlychan W; Narayanamurti V
    Nanotechnology; 2005 Oct; 16(10):2342-5. PubMed ID: 20818016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Stress Properties of AlGaN Epilayers Grown on AlN-Nanopatterned Sapphire Templates by Hydride Vapor Phase Epitaxy.
    Tasi CT; Wang WK; Ou SL; Huang SY; Horng RH; Wuu DS
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-engineered growth of homoepitaxial GaN crystals using hydride vapor phase epitaxy.
    Lee M; Park S
    RSC Adv; 2018 Oct; 8(62):35571-35574. PubMed ID: 35547933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium hydride vapor phase epitaxy of GaN nanowires.
    Zervos M; Othonos A
    Nanoscale Res Lett; 2011 Mar; 6(1):262. PubMed ID: 21711801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral growth and formation of stacking faults and vacancy islands during molecular beam epitaxy of InN on GaN(0001).
    Liu Y; Li L
    Nanotechnology; 2011 Oct; 22(42):425707. PubMed ID: 21941037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated stress management and dislocation control in GaN growth on Si (111) substrates by using a carbon nanotube mask.
    Wang K; Yu T; Wei Y; Li M; Zhang G; Fan S
    Nanoscale; 2019 Mar; 11(10):4489-4495. PubMed ID: 30806420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.
    Yu IS; Chang CP; Yang CP; Lin CT; Ma YR; Chen CC
    Nanoscale Res Lett; 2014; 9(1):682. PubMed ID: 25593560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled growth of catalyst-free GaN wires by metal-organic vapour phase epitaxy.
    Koester R; Hwang JS; Durand C; Dang Dle S; Eymery J
    Nanotechnology; 2010 Jan; 21(1):015602. PubMed ID: 19946171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications.
    Shen KC; Jiang MC; Liu HR; Hsueh HH; Kao YC; Horng RH; Wuu DS
    Opt Express; 2013 Nov; 21(22):26468-74. PubMed ID: 24216867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective area growth of In(Ga)N/GaN nanocolumns by molecular beam epitaxy on GaN-buffered Si(111): from ultraviolet to infrared emission.
    Albert S; Bengoechea-Encabo A; Sánchez-García MA; Kong X; Trampert A; Calleja E
    Nanotechnology; 2013 May; 24(17):175303. PubMed ID: 23558410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching.
    Son JS; Honda Y; Amano H
    Opt Express; 2014 Feb; 22(3):3585-92. PubMed ID: 24663649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connection between Carbon Incorporation and Growth Rate for GaN Epitaxial Layers Prepared by OMVPE.
    Ciarkowski T; Allen N; Carlson E; McCarthy R; Youtsey C; Wang J; Fay P; Xie J; Guido L
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31374963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate effects on the strain relaxation in GaN/AlN short-period superlattices.
    Kladko V; Kuchuk A; Lytvyn P; Yefanov O; Safriuk N; Belyaev A; Mazur YI; Decuir EA; Ware ME; Salamo GJ
    Nanoscale Res Lett; 2012 Jun; 7(1):289. PubMed ID: 22672771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial stage of cubic GaN for heterophase epitaxial growth induced on nanoscale v-grooved Si(001) in metal-organic vapor-phase epitaxy.
    Lee SC; Jiang YB; Durniak M; Wetzel C; Brueck SRJ
    Nanotechnology; 2019 Jan; 30(2):025711. PubMed ID: 30411717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect structure in heteroepitaxial semipolar (1122) (Ga, Al)N.
    Arroyo Rojas Dasilva Y; Chauvat MP; Ruterana P; Lahourcade L; Monroy E; Nataf G
    J Phys Condens Matter; 2010 Sep; 22(35):355802. PubMed ID: 21403298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.