These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 25827397)
1. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Souza AC; Nascimento AL; de Vasconcelos NM; Jerônimo MS; Siqueira IM; R-Santos L; Cintra DO; Fuscaldi LL; Pires Júnior OR; Titze-de-Almeida R; Borin MF; Báo SN; Martins OP; Cardoso VN; Fernandes SO; Mortari MR; Tedesco AC; Amaral AC; Felipe MS; Bocca AL Eur J Med Chem; 2015 May; 95():267-76. PubMed ID: 25827397 [TBL] [Abstract][Full Text] [Related]
2. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. Amaral AC; Bocca AL; Ribeiro AM; Nunes J; Peixoto DL; Simioni AR; Primo FL; Lacava ZG; Bentes R; Titze-de-Almeida R; Tedesco AC; Morais PC; Felipe MS J Antimicrob Chemother; 2009 Mar; 63(3):526-33. PubMed ID: 19151037 [TBL] [Abstract][Full Text] [Related]
3. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532 [TBL] [Abstract][Full Text] [Related]
4. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of a poly-aggregated formulation of amphotericin B in treating systemic sporotrichosis caused by Sporothrix brasiliensis. Ishida K; Castro RA; Torrado JJ; Serrano DR; Borba-Santos LP; Quintella LP; de Souza W; Rozental S; Lopes-Bezerra LM Med Mycol; 2018 Apr; 56(3):288-296. PubMed ID: 28575449 [TBL] [Abstract][Full Text] [Related]
6. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. de Carvalho RF; Ribeiro IF; Miranda-Vilela AL; de Souza Filho J; Martins OP; Cintra e Silva Dde O; Tedesco AC; Lacava ZG; Báo SN; Sampaio RN Exp Parasitol; 2013 Oct; 135(2):217-22. PubMed ID: 23891944 [TBL] [Abstract][Full Text] [Related]
7. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565 [TBL] [Abstract][Full Text] [Related]
8. In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation. Espada R; Valdespina S; Dea MA; Molero G; Ballesteros MP; Bolás F; Torrado JJ J Antimicrob Chemother; 2008 May; 61(5):1125-31. PubMed ID: 18285313 [TBL] [Abstract][Full Text] [Related]
9. Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B. Ludwig DB; de Camargo LEA; Khalil NM; Auler ME; Mainardes RM Mycopathologia; 2018 Aug; 183(4):659-668. PubMed ID: 29497926 [TBL] [Abstract][Full Text] [Related]
10. Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis. Saldanha CA; Garcia MP; Iocca DC; Rebelo LG; Souza AC; Bocca AL; Almeida Santos Mde F; Morais PC; Azevedo RB PLoS Negl Trop Dis; 2016 Jun; 10(6):e0004754. PubMed ID: 27303789 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Gangadhar KN; Adhikari K; Srichana T Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597 [TBL] [Abstract][Full Text] [Related]
13. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model. Khan MA; Owais M J Antimicrob Chemother; 2006 Jul; 58(1):125-32. PubMed ID: 16709592 [TBL] [Abstract][Full Text] [Related]
14. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. Van de Ven H; Paulussen C; Feijens PB; Matheeussen A; Rombaut P; Kayaert P; Van den Mooter G; Weyenberg W; Cos P; Maes L; Ludwig A J Control Release; 2012 Aug; 161(3):795-803. PubMed ID: 22641062 [TBL] [Abstract][Full Text] [Related]
16. Engineering Oral and Parenteral Amorphous Amphotericin B Formulations against Experimental Trypanosoma cruzi Infections. Rolón M; Serrano DR; Lalatsa A; de Pablo E; Torrado JJ; Ballesteros MP; Healy AM; Vega C; Coronel C; Bolás-Fernández F; Dea-Ayuela MA Mol Pharm; 2017 Apr; 14(4):1095-1106. PubMed ID: 28198632 [TBL] [Abstract][Full Text] [Related]
17. Efficacy and toxicity evaluation of new amphotericin B micelle systems for brain fungal infections. Moreno-Rodríguez AC; Torrado-Durán S; Molero G; García-Rodríguez JJ; Torrado-Santiago S Int J Pharm; 2015 Oct; 494(1):17-22. PubMed ID: 26256151 [TBL] [Abstract][Full Text] [Related]
18. The effect of nanoparticle properties, detection method, delivery route and animal model on poly(lactic-co-glycolic) acid nanoparticles biodistribution in mice and rats. Simon LC; Sabliov CM Drug Metab Rev; 2014 May; 46(2):128-41. PubMed ID: 24303927 [TBL] [Abstract][Full Text] [Related]
19. In vitro antifungal activity and toxicity of itraconazole in DMSA-PLGA nanoparticles. Cunha-Azevedo EP; Silva JR; Martins OP; Siqueira-Moura MP; Bocca AL; Felipe MS; Tedesco AC; Azevedo RB J Nanosci Nanotechnol; 2011 Mar; 11(3):2308-14. PubMed ID: 21449386 [TBL] [Abstract][Full Text] [Related]
20. Supramolecular Chitosan Micro-Platelets Synergistically Enhance Anti-Candida albicans Activity of Amphotericin B Using an Immunocompetent Murine Model. Grisin T; Bories C; Bombardi M; Loiseau PM; Rouffiac V; Solgadi A; Mallet JM; Ponchel G; Bouchemal K Pharm Res; 2017 May; 34(5):1067-1082. PubMed ID: 28168390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]