These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 25827397)
41. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Jansook P; Pichayakorn W; Ritthidej GC Drug Dev Ind Pharm; 2018 Oct; 44(10):1693-1700. PubMed ID: 29936874 [TBL] [Abstract][Full Text] [Related]
42. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Costa Lima SA; Resende M; Silvestre R; Tavares J; Ouaissi A; Lin PK; Cordeiro-da-Silva A Nanomedicine (Lond); 2012 Dec; 7(12):1839-49. PubMed ID: 22812711 [TBL] [Abstract][Full Text] [Related]
43. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Zadeh Mehrizi T; Mosaffa N; Vodjgani M; Ebrahimi Shahmabadi H Nanotoxicology; 2024 May; 18(3):231-258. PubMed ID: 38646931 [TBL] [Abstract][Full Text] [Related]
44. Comparative therapeutic efficacy of a novel lyophilized amphotericin B lecithin-based oil-water microemulsion and deoxycholate-amphotericin B in immunocompetent and neutropenic mice infected with Candida albicans. Brime B; Molero G; Frutos P; Frutos G Eur J Pharm Sci; 2004 Aug; 22(5):451-8. PubMed ID: 15265515 [TBL] [Abstract][Full Text] [Related]
45. Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Xue B; Yu Y; Peng G; Sun M; Lv P; Li X Molecules; 2022 May; 27(10):. PubMed ID: 35630555 [TBL] [Abstract][Full Text] [Related]
46. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Wang ZH; Wang ZY; Sun CS; Wang CY; Jiang TY; Wang SL Biomaterials; 2010 Feb; 31(5):908-15. PubMed ID: 19853292 [TBL] [Abstract][Full Text] [Related]
47. Significance of algal polymer in designing amphotericin B nanoparticles. Bhatia S; Kumar V; Sharma K; Nagpal K; Bera T ScientificWorldJournal; 2014; 2014():564573. PubMed ID: 25478596 [TBL] [Abstract][Full Text] [Related]
48. Antifungal activity of amphotericin B conjugated to carbon nanotubes. Benincasa M; Pacor S; Wu W; Prato M; Bianco A; Gennaro R ACS Nano; 2011 Jan; 5(1):199-208. PubMed ID: 21141979 [TBL] [Abstract][Full Text] [Related]
49. Development of polyion complex micelles for encapsulating and delivering amphotericin B. Wang CH; Wang WT; Hsiue GH Biomaterials; 2009 Jul; 30(19):3352-8. PubMed ID: 19299011 [TBL] [Abstract][Full Text] [Related]
50. Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Lin W; Xu T; Wang Z; Chen J Drug Deliv; 2021 Dec; 28(1):499-509. PubMed ID: 33657949 [TBL] [Abstract][Full Text] [Related]
51. Novel and safe single-dose treatment of cutaneous leishmaniasis with implantable amphotericin B-loaded microparticles. Sousa-Batista AJ; Pacienza-Lima W; Ré MI; Rossi-Bergmann B Int J Parasitol Drugs Drug Resist; 2019 Dec; 11():148-155. PubMed ID: 31331828 [TBL] [Abstract][Full Text] [Related]
52. N-acetylcysteine reduces amphotericin B deoxycholate nephrotoxicity and improves the outcome of murine cryptococcosis. Magalhães TFF; Costa MC; Holanda RA; Ferreira GF; Carvalho VSD; Freitas GJC; Ribeiro NQ; Emídio ECP; Carmo PHF; de Brito CB; de Souza DG; Rocha CEV; Paixão TA; de Resende-Stoianoff MA; Santos DA Med Mycol; 2020 Aug; 58(6):835-844. PubMed ID: 31919505 [TBL] [Abstract][Full Text] [Related]
53. Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its In Vitro Antifungal Activity. Casa DM; Carraro TC; de Camargo LE; Dalmolin LF; Khalil NM; Mainardes RM J Nanosci Nanotechnol; 2015 Jan; 15(1):848-54. PubMed ID: 26328449 [TBL] [Abstract][Full Text] [Related]
54. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Asthana S; Gupta PK; Jaiswal AK; Dube A; Chourasia MK Nanomedicine (Lond); 2015; 10(7):1093-109. PubMed ID: 25929567 [TBL] [Abstract][Full Text] [Related]
55. Addition of aerosolized deoxycholate amphotericin B to systemic prophylaxis to prevent airways invasive fungal infections in allogeneic hematopoietic SCT: a single-center retrospective study. Morello E; Pagani L; Coser P; Cavattoni I; Cortelazzo S; Casini M; Billio A; Rossi G Bone Marrow Transplant; 2011 Jan; 46(1):132-6. PubMed ID: 20383205 [TBL] [Abstract][Full Text] [Related]
56. Development of amphotericin B loaded polymersomes based on (PEG)(3)-PLA co-polymers: Factors affecting size and in vitro evaluation. Jain JP; Kumar N Eur J Pharm Sci; 2010 Aug; 40(5):456-65. PubMed ID: 20580669 [TBL] [Abstract][Full Text] [Related]
57. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Zia Q; Khan AA; Swaleha Z; Owais M Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804 [TBL] [Abstract][Full Text] [Related]
58. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release. Chhabra R; Grabrucker AM; Veratti P; Belletti D; Boeckers TM; Vandelli MA; Forni F; Tosi G; Ruozi B Int J Pharm; 2014 Aug; 471(1-2):349-57. PubMed ID: 24882034 [TBL] [Abstract][Full Text] [Related]
59. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related]
60. Amphotericin B deoxycholate (d-AMB) use in cases with febrile neutropenia and fungal infections: lower toxicity with suitable premedication. Oto OA; Paydas S; Disel U; Yavuz S; Seydaoglu G Mycoses; 2007 Mar; 50(2):135-9. PubMed ID: 17305778 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]