These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25827577)
1. Returning land contaminated as a result of radiation accidents to farming use. Voronina AV; Blinova MO; Semenishchev VS; Gupta DK J Environ Radioact; 2015 Jun; 144():103-12. PubMed ID: 25827577 [TBL] [Abstract][Full Text] [Related]
2. Decontamination of seawater from Voronina AV; Noskova AY; Semenishchev VS; Gupta DK J Environ Radioact; 2020 Jun; 217():106210. PubMed ID: 32217243 [TBL] [Abstract][Full Text] [Related]
3. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. Avramenko V; Bratskaya S; Zheleznov V; Sheveleva I; Voitenko O; Sergienko V J Hazard Mater; 2011 Feb; 186(2-3):1343-50. PubMed ID: 21208744 [TBL] [Abstract][Full Text] [Related]
4. Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident. Ding D; Zhang Z; Lei Z; Yang Y; Cai T Environ Sci Pollut Res Int; 2016 Feb; 23(3):2249-63. PubMed ID: 26604196 [TBL] [Abstract][Full Text] [Related]
5. Reduction of radiocaesium absorption by sheep consuming feed contaminated with fallout from Chernobyl. Phillippo M; Gvozdanovic S; Gvozdanovic D; Chesters JK; Paterson E; Mills CF Vet Rec; 1988 Jun; 122(23):560-3. PubMed ID: 2842924 [TBL] [Abstract][Full Text] [Related]
6. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Osmanlioglu AE J Hazard Mater; 2006 Sep; 137(1):332-5. PubMed ID: 16563616 [TBL] [Abstract][Full Text] [Related]
7. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils. Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723 [TBL] [Abstract][Full Text] [Related]
8. Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in Brassica oleracea. Penrose B; Johnson Née Payne KA; Arkhipov A; Maksimenko A; Gaschak S; Meacham MC; Crout NJM; White PJ; Beresford NA; Broadley MR J Environ Radioact; 2016 May; 155-156():112-121. PubMed ID: 26945429 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of ¹³⁷Cs⁺ and ⁹⁹TcO₄⁻ from aqueous solutions. Mahmoud MR; Seliman AF Appl Radiat Isot; 2014 Sep; 91():141-54. PubMed ID: 24935117 [TBL] [Abstract][Full Text] [Related]
10. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition]. Mamikhin SV; Manakhov DV; Shcheglov AI Radiats Biol Radioecol; 2014; 54(1):72-6. PubMed ID: 25764848 [TBL] [Abstract][Full Text] [Related]
11. Adsorption models of 137Cs radionuclide and Sr (II) on some Egyptian soils. Kamel NH J Environ Radioact; 2010 Apr; 101(4):297-303. PubMed ID: 20167404 [TBL] [Abstract][Full Text] [Related]
12. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. Valsala TP; Roy SC; J G Shah ; Gabriel J; Raj K; Venugopal V J Hazard Mater; 2009 Jul; 166(2-3):1148-53. PubMed ID: 19179001 [TBL] [Abstract][Full Text] [Related]
13. Nanodispersion of ferrocianides for purification of man-made contaminated water containing caesium. Melnychenko T; Kadoshnikov V; Lytvynenko Y; Pysanska I; Zabulonov Y; Marysyk S; Krasnoholovets V J Environ Radioact; 2023 May; 261():107135. PubMed ID: 36773552 [TBL] [Abstract][Full Text] [Related]
14. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium. Gil-García C; Rigol A; Vidal M J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483 [TBL] [Abstract][Full Text] [Related]
15. Forage grasses with lower uptake of caesium and strontium could provide 'safer' crops for radiologically contaminated areas. Penrose B; Beresford NA; Crout NMJ; Lovatt JA; Thomson R; Broadley MR PLoS One; 2017; 12(5):e0176040. PubMed ID: 28459808 [TBL] [Abstract][Full Text] [Related]
16. Shipboard determination of radiocesium in seawater after the Fukushima accident: results from the 2011-2012 Russian expeditions to the Sea of Japan and western North Pacific Ocean. Ramzaev V; Nikitin A; Sevastyanov A; Artemiev G; Bruk G; Ivanov S J Environ Radioact; 2014 Sep; 135():13-24. PubMed ID: 24727550 [TBL] [Abstract][Full Text] [Related]
17. Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment. Gonze MA; Mourlon C; Calmon P; Manach E; Debayle C; Baccou J J Environ Radioact; 2016 Sep; 161():22-34. PubMed ID: 26153556 [TBL] [Abstract][Full Text] [Related]
18. [The use of ferrocyanides for obtaining pure meat production in contaminated areas following the accident at the Chernobyl Atomic Electric Power Station]. Buldakov LA; Borisov VP; Vasilenko IIa; Budarkov VA; Miakov EA; Turubarova AA; Zenkin AS; Liaginskaia AM; Belinskaia FA; Kalinin NF Vopr Pitan; 1992; (5-6):62-5. PubMed ID: 1296369 [TBL] [Abstract][Full Text] [Related]
19. Radiocesium leaching from contaminated litter in forest streams. Sakai M; Gomi T; Naito RS; Negishi JN; Sasaki M; Toda H; Nunokawa M; Murase K J Environ Radioact; 2015 Jun; 144():15-20. PubMed ID: 25791899 [TBL] [Abstract][Full Text] [Related]
20. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land. Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]