BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25827873)

  • 21. Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy.
    Shlyakhtenko LS; Gall AA; Lyubchenko YL
    Methods Mol Biol; 2013; 931():295-312. PubMed ID: 23027008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization and analysis of chromatin by scanning force microscopy.
    Bustamante C; Zuccheri G; Leuba SH; Yang G; Samori B
    Methods; 1997 May; 12(1):73-83. PubMed ID: 9169197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex.
    Wittmeyer J; Saha A; Cairns B
    Methods Enzymol; 2004; 377():322-43. PubMed ID: 14979035
    [No Abstract]   [Full Text] [Related]  

  • 25. Atomic force microscopy on chromosomes, chromatin and DNA: a review.
    Kalle W; Strappe P
    Micron; 2012 Dec; 43(12):1224-31. PubMed ID: 22633852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry.
    Lyubchenko YL; Shlyakhtenko LS; Gall AA
    Methods Mol Biol; 2009; 543():337-51. PubMed ID: 19378175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone.
    Karymov MA; Tomschik M; Leuba SH; Caiafa P; Zlatanova J
    FASEB J; 2001 Dec; 15(14):2631-41. PubMed ID: 11726539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin.
    Wang H; Bash R; Yodh JG; Hager GL; Lohr D; Lindsay SM
    Biophys J; 2002 Dec; 83(6):3619-25. PubMed ID: 12496129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyses of nuclear proteins and nucleic acid structures using atomic force microscopy.
    Gilmore JL; Yoshida A; Takahashi H; Deguchi K; Kobori T; Louvet E; Kumeta M; Yoshimura SH; Takeyasu K
    Methods Mol Biol; 2015; 1262():119-53. PubMed ID: 25555579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin reconstitution: development of a salt-dialysis method monitored by nano-technology.
    Hizume K; Yoshimura SH; Maruyama H; Kim J; Wada H; Takeyasu K
    Arch Histol Cytol; 2002 Dec; 65(5):405-13. PubMed ID: 12680456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging of nucleic acids with atomic force microscopy.
    Lyubchenko YL; Shlyakhtenko LS; Ando T
    Methods; 2011 Jun; 54(2):274-83. PubMed ID: 21310240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualization of nucleosomal substructure in native chromatin by atomic force microscopy.
    Martin LD; Vesenka JP; Henderson E; Dobbs DL
    Biochemistry; 1995 Apr; 34(14):4610-6. PubMed ID: 7718563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly compact folding of chromatin induced by cellular cation concentrations. Evidence from atomic force microscopy studies in aqueous solution.
    Caño S; Caravaca JM; Martín M; Daban JR
    Eur Biophys J; 2006 Aug; 35(6):495-501. PubMed ID: 16572269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of nucleosomal structures measured by high-speed atomic force microscopy.
    Katan AJ; Vlijm R; Lusser A; Dekker C
    Small; 2015 Feb; 11(8):976-84. PubMed ID: 25336288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rad51 polymerization reveals a new chromatin remodeling mechanism.
    Dupaigne P; Lavelle C; Justome A; Lafosse S; Mirambeau G; Lipinski M; Piétrement O; Le Cam E
    PLoS One; 2008; 3(11):e3643. PubMed ID: 18982066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ AFM Analysis Investigating Disassembly of DNA Nanoparticles and Nanofilms.
    Zou Y; Wan L; Blacklock J; Xie L; Carroll S; Oupicky D; Mao G
    Methods Mol Biol; 2019; 1943():199-209. PubMed ID: 30838618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring biomolecular interactions by time-lapse atomic force microscopy.
    Stolz M; Stoffler D; Aebi U; Goldsbury C
    J Struct Biol; 2000 Sep; 131(3):171-80. PubMed ID: 11052889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami.
    Wu N; Zhou X; Czajkowsky DM; Ye M; Zeng D; Fu Y; Fan C; Hu J; Li B
    Nanoscale; 2011 Jun; 3(6):2481-4. PubMed ID: 21526259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.