BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25828645)

  • 1. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells.
    Bhumiratana S; Vunjak-Novakovic G
    Methods; 2015 Aug; 84():109-14. PubMed ID: 25828645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal Stem Cells for Osteochondral Tissue Engineering.
    Ng J; Bernhard J; Vunjak-Novakovic G
    Methods Mol Biol; 2016; 1416():35-54. PubMed ID: 27236665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered osteochondral constructs in the shape of an articular condyle.
    Alhadlaq A; Mao JJ
    J Bone Joint Surg Am; 2005 May; 87(5):936-44. PubMed ID: 15866954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stratified Scaffolds for Osteochondral Tissue Engineering.
    Nooeaid P; Schulze-Tanzil G; Boccaccini AR
    Methods Mol Biol; 2015; 1340():191-200. PubMed ID: 26445840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Tissue-Engineered Construct of Human Cartilage Tissue in a Flow-Through Bioreactor.
    Sevastianov VI; Basok YB; Grigor'ev AM; Kirsanova LA; Vasilets VN
    Bull Exp Biol Med; 2017 Dec; 164(2):269-273. PubMed ID: 29177908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro.
    Kang N; Liu X; Yan L; Wang Q; Cao Y; Xiao R
    Cells Tissues Organs; 2013; 198(5):357-66. PubMed ID: 24503710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds.
    Yeh HY; Lin TY; Lin CH; Yen BL; Tsai CL; Hsu SH
    Differentiation; 2013; 86(4-5):171-83. PubMed ID: 24462469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal stromal/stem cell-or chondrocyte-seeded microcarriers as building blocks for cartilage tissue engineering.
    Georgi N; van Blitterswijk C; Karperien M
    Tissue Eng Part A; 2014 Sep; 20(17-18):2513-23. PubMed ID: 24621188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation.
    Bhumiratana S; Eton RE; Oungoulian SR; Wan LQ; Ateshian GA; Vunjak-Novakovic G
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6940-5. PubMed ID: 24778247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering.
    Huang H; Zhang X; Hu X; Dai L; Zhu J; Man Z; Chen H; Zhou C; Ao Y
    Biomed Mater; 2014 Jun; 9(3):035008. PubMed ID: 24770944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration.
    Karimi T; Barati D; Karaman O; Moeinzadeh S; Jabbari E
    Integr Biol (Camb); 2015 Jan; 7(1):112-27. PubMed ID: 25387395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Testing of Cartilage Constructs.
    Olvera D; Daly A; Kelly DJ
    Methods Mol Biol; 2015; 1340():279-87. PubMed ID: 26445846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of cartilage engineered from elderly human chondrocytes for articular surface repair.
    Zhao X; Bichara DA; Ballyns FP; Yoo JJ; Ong W; Randolph MA; Bonassar LJ; Gill TJ
    Tissue Eng Part A; 2012 Jul; 18(13-14):1490-9. PubMed ID: 22435677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells.
    Zhao YH; Yang Q; Xia Q; Peng J; Lu SB; Guo QY; Ma XL; Xu BS; Hu YC; Zhao B; Zhang L; Wang AY; Xu WJ; Miao J; Liu Y
    Chin Med J (Engl); 2013 Aug; 126(16):3130-7. PubMed ID: 23981625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications.
    Lee JW; Kim YH; Kim SH; Han SH; Hahn SB
    Yonsei Med J; 2004 Jun; 45 Suppl():41-7. PubMed ID: 15250049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal cartilage engineering from amniotic mesenchymal progenitor cells.
    Kunisaki SM; Jennings RW; Fauza DO
    Stem Cells Dev; 2006 Apr; 15(2):245-53. PubMed ID: 16646670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.
    Grad S; Loparic M; Peter R; Stolz M; Aebi U; Alini M
    Osteoarthritis Cartilage; 2012 Apr; 20(4):288-95. PubMed ID: 22285735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.