BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25828659)

  • 1. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.
    Day L; Williams RP; Otter D; Augustin MA
    J Dairy Sci; 2015 Jun; 98(6):3633-44. PubMed ID: 25828659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of composition, casein genetic variants and glycosylation degree on bovine milk whipping properties.
    Hewa Nadugala B; Hepworth G; Mazzonetto M; Nebl T; Pagel CN; Raynes JK; Ranadheera CS; Logan A
    Food Res Int; 2024 Mar; 179():113949. PubMed ID: 38342518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential in vitro digestion rates in gastric phase of bovine milk with different κ-casein phenotypes.
    Sheng B; Nielsen SD; Poulsen NA; Larsen LB
    J Dairy Sci; 2021 Oct; 104(10):10462-10472. PubMed ID: 34218908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the A and B variants of both alpha s1- and kappa-casein on bovine casein micelle solvation and kappa-casein content.
    Anema SG; Creamer LK
    J Dairy Res; 1993 Nov; 60(4):505-16. PubMed ID: 8294607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The two-stage coagulation of milk proteins in the minimum of the heat coagulation time-pH profile of milk: effect of casein micelle size.
    O'Connell JE; Fox PF
    J Dairy Sci; 2000 Mar; 83(3):378-86. PubMed ID: 10750091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system.
    Li S; Ye A; Singh H
    J Dairy Sci; 2019 Sep; 102(9):7747-7759. PubMed ID: 31326173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casein micelles: size distribution in milks from individual cows.
    de Kruif CG; Huppertz T
    J Agric Food Chem; 2012 May; 60(18):4649-55. PubMed ID: 22486748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.
    Anema SG; de Kruif CG
    J Agric Food Chem; 2013 Jul; 61(29):7142-9. PubMed ID: 23808832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing degree of glycosylation and phosphorylation of caseins in individual cow milk samples.
    Poulsen NA; Jensen HB; Larsen LB
    J Dairy Sci; 2016 May; 99(5):3325-3333. PubMed ID: 26995120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kappa-casein interactions in the suspension of the two major calcium-sensitive human beta-caseins.
    Sood SM; Erickson G; Slattery CW
    J Dairy Sci; 2003 Jul; 86(7):2269-75. PubMed ID: 12906042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic characterization of bovine milk containing β-casein variants A1A1 and A2A2, and their heterozygote A1A2.
    Wang X; Yu Z; Zhao X; Han R; Huang D; Yang Y; Cheng G
    J Sci Food Agric; 2021 Jan; 101(2):718-725. PubMed ID: 32710442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG; Li Y
    J Agric Food Chem; 2003 Mar; 51(6):1640-6. PubMed ID: 12617598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural differences between bovine A(1) and A(2) β-casein alter micelle self-assembly and influence molecular chaperone activity.
    Raynes JK; Day L; Augustin MA; Carver JA
    J Dairy Sci; 2015 Apr; 98(4):2172-82. PubMed ID: 25648798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kappa-casein and beta-caseins in human milk micelles: structural studies.
    Dev BC; Sood SM; DeWind S; Slattery CW
    Arch Biochem Biophys; 1994 Nov; 314(2):329-36. PubMed ID: 7979373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition and effect of blending of noncoagulating, poorly coagulating, and well-coagulating bovine milk from individual Danish Holstein cows.
    Frederiksen PD; Andersen KK; Hammershøj M; Poulsen HD; Sørensen J; Bakman M; Qvist KB; Larsen LB
    J Dairy Sci; 2011 Oct; 94(10):4787-99. PubMed ID: 21943730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of kappa-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG
    J Agric Food Chem; 2007 May; 55(9):3635-42. PubMed ID: 17417865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation of κ-casein: genetic and nongenetic variation and effects on rennet coagulation properties of milk.
    Bonfatti V; Chiarot G; Carnier P
    J Dairy Sci; 2014; 97(4):1961-9. PubMed ID: 24508440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The monomeric casein composition of different size bovine casein micelles.
    Ekstrand B; Larsson-Raźnikiewicz M
    Biochim Biophys Acta; 1978 Sep; 536(1):1-9. PubMed ID: 568490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for the formation and structure of casein micelles from subunits of variable composition.
    Slattery CW; Evard R
    Biochim Biophys Acta; 1973 Aug; 317(2):529-38. PubMed ID: 19999736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.