These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25828694)

  • 41. Photosynthetic Microbial Fuel Cells.
    Laureanti JA; Jones AK
    Adv Biochem Eng Biotechnol; 2016; 158():159-175. PubMed ID: 28070595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective adsorption of L-serine functional groups on the anatase TiO2(101) surface in benthic microbial fuel cells.
    Zhao YL; Wang CH; Zhai Y; Zhang RQ; Van Hove MA
    Phys Chem Chem Phys; 2014 Oct; 16(38):20806-17. PubMed ID: 25165847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses from freshwater sediment during electricity generation using microbial fuel cells.
    Hong SW; Chang IS; Choi YS; Kim BH; Chung TH
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):389-95. PubMed ID: 18751733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
    Chen CY; Chen TY; Chung YC
    Environ Technol; 2014; 35(1-4):286-93. PubMed ID: 24600867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of a new type of three-dimensional honeycomb-structure anode in microbial electrochemical systems for energy harvesting and pollutant removal.
    Li J; Chen D; Liu G; Li D; Tian Y; Feng Y
    Water Res; 2022 Jun; 218():118429. PubMed ID: 35483206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell.
    Kirubaharan CJ; Wang JW; Abbas SZ; Shah SB; Zhang Y; Wang JX; Yong YC
    Chemosphere; 2023 Jun; 326():138413. PubMed ID: 36925003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal/Conducting-polymer composite nanowires.
    Meenach SA; Burdick J; Kunwar A; Wang J
    Small; 2007 Feb; 3(2):239-43. PubMed ID: 17199245
    [No Abstract]   [Full Text] [Related]  

  • 48. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance.
    Picioreanu C; van Loosdrecht MC; Curtis TP; Scott K
    Bioelectrochemistry; 2010 Apr; 78(1):8-24. PubMed ID: 19523880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis.
    Luckarift HR; Sizemore SR; Roy J; Lau C; Gupta G; Atanassov P; Johnson GR
    Chem Commun (Camb); 2010 Sep; 46(33):6048-50. PubMed ID: 20574569
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review.
    Choudhury P; Prasad Uday US; Bandyopadhyay TK; Ray RN; Bhunia B
    Bioengineered; 2017 Sep; 8(5):471-487. PubMed ID: 28453385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane.
    Pandit S; Sengupta A; Kale S; Das D
    Bioresour Technol; 2011 Feb; 102(3):2736-44. PubMed ID: 21129959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge.
    Liu X; Du X; Wang X; Li N; Xu P; Ding Y
    Biosens Bioelectron; 2013 Mar; 41():848-51. PubMed ID: 22939511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell.
    Kizling M; Stolarczyk K; Tammela P; Wang Z; Nyholm L; Golimowski J; Bilewicz R
    Bioelectrochemistry; 2016 Dec; 112():184-90. PubMed ID: 26936112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanostructured conducting polymers as intelligent implant surface: fabricated on biomedical titanium with a potential-induced reversible switch in wettability.
    Liao J; Ning C; Yin Z; Tan G; Huang S; Zhou Z; Chen J; Pan H
    Chemphyschem; 2013 Dec; 14(17):3891-4. PubMed ID: 24151250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter.
    Choi S; Kim JR; Cha J; Kim Y; Premier GC; Kim C
    Bioresour Technol; 2013 Jan; 128():14-21. PubMed ID: 23196216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors.
    Ekanayake EM; Preethichandra DM; Kaneto K
    Biosens Bioelectron; 2007 Aug; 23(1):107-13. PubMed ID: 17475472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.
    Roy JN; Luckarift HR; Sizemore SR; Farrington KE; Lau C; Johnson GR; Atanassov P
    Enzyme Microb Technol; 2013 Jul; 53(2):123-7. PubMed ID: 23769313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electricity generation from a floating microbial fuel cell.
    Huang Y; He Z; Kan J; Manohar AK; Nealson KH; Mansfeld F
    Bioresour Technol; 2012 Jun; 114():308-13. PubMed ID: 22446049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.