These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25828952)

  • 1. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.
    Weissman BP; Li NS; York D; Harris M; Piccirilli JA
    Biochim Biophys Acta; 2015 Nov; 1854(11):1737-45. PubMed ID: 25828952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.
    Chen H; Piccirilli JA; Harris ME; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1795-800. PubMed ID: 25812974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects.
    Cassano AG; Anderson VE; Harris ME
    Biopolymers; 2004 Jan; 73(1):110-29. PubMed ID: 14691944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the transition-state structure of the reaction of kanamycin nucleotidyltransferase by heavy-atom kinetic isotope effects.
    Gerratana B; Frey PA; Cleland WW
    Biochemistry; 2001 Mar; 40(9):2972-7. PubMed ID: 11258909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic investigations of the hydrolysis of amides, oxoesters and thioesters via kinetic isotope effects and positional isotope exchange.
    Robins LI; Fogle EJ; Marlier JF
    Biochim Biophys Acta; 2015 Nov; 1854(11):1756-67. PubMed ID: 25543107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Enzyme Isotope Effects.
    Kholodar SA; Ghosh AK; Kohen A
    Methods Enzymol; 2017; 596():43-83. PubMed ID: 28911779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotope labeling for studying RNA by solid-state NMR spectroscopy.
    Marchanka A; Kreutz C; Carlomagno T
    J Biomol NMR; 2018 Jul; 71(3):151-164. PubMed ID: 29651587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism.
    Harris ME; Piccirilli JA; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1801-8. PubMed ID: 25936517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable isotope labeling methods for DNA.
    Nelissen FHT; Tessari M; Wijmenga SS; Heus HA
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():89-108. PubMed ID: 27573183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway.
    Dayie TK; Thakur CS
    J Biomol NMR; 2010 May; 47(1):19-31. PubMed ID: 20309608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access to any site directed stable isotope ((2)H, (13)C, (15)N, (17)O and (18)O) in genetically encoded amino acids.
    Dawadi PB; Lugtenburg J
    Molecules; 2013 Jan; 18(1):482-519. PubMed ID: 23282537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of phosphotriesters: determination of transition states in parallel reactions by heavy-atom isotope effects.
    Anderson MA; Shim H; Raushel FM; Cleland WW
    J Am Chem Soc; 2001 Sep; 123(38):9246-53. PubMed ID: 11562204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs.
    Choi JS; Berdis AJ
    Biochim Biophys Acta; 2016 Jan; 1864(1):165-76. PubMed ID: 26004088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids.
    Sigel RK; Skilandat M; Sigel A; Operschall BP; Sigel H
    Met Ions Life Sci; 2013; 11():191-274. PubMed ID: 23430775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteolytic labeling with 18O for comparative proteomics studies: preparation of 18O-labeled peptides and the 18O/16O peptide mixture.
    Fenselau C; Yao X
    Methods Mol Biol; 2007; 359():135-42. PubMed ID: 17484115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.