BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25828975)

  • 21. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria.
    van Schaik W; van der Voort M; Molenaar D; Moezelaar R; de Vos WM; Abee T
    J Bacteriol; 2007 Jun; 189(12):4384-90. PubMed ID: 17416654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron.
    Hayrapetyan H; Muller L; Tempelaars M; Abee T; Nierop Groot M
    Int J Food Microbiol; 2015 May; 200():72-9. PubMed ID: 25700364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.
    Hayrapetyan H; Tempelaars M; Nierop Groot M; Abee T
    PLoS One; 2015; 10(8):e0134872. PubMed ID: 26241851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm.
    Oosthuizen MC; Steyn B; Lindsay D; Brözel VS; von Holy A
    FEMS Microbiol Lett; 2001 Jan; 194(1):47-51. PubMed ID: 11150664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilm formation displays intrinsic offensive and defensive features of
    Caro-Astorga J; Frenzel E; Perkins JR; Álvarez-Mena A; de Vicente A; Ranea JAG; Kuipers OP; Romero D
    NPJ Biofilms Microbiomes; 2020; 6():3. PubMed ID: 31969984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle biofilms.
    K R; Y V N; V P V
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111160. PubMed ID: 32526635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
    Bridier A; Le Coq D; Dubois-Brissonnet F; Thomas V; Aymerich S; Briandet R
    PLoS One; 2011 Jan; 6(1):e16177. PubMed ID: 21267464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905.
    Gao T; Ding M; Yang CH; Fan H; Chai Y; Li Y
    Res Microbiol; 2019 Mar; 170(2):86-96. PubMed ID: 30395927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of manganese and heme on biofilm formation of Bacillus cereus food isolates.
    Hussain MS; Kwon M; Oh DH
    PLoS One; 2018; 13(7):e0200958. PubMed ID: 30048488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905.
    Gao T; Li Y; Chai Y; Wang Q; Ding M
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5943-5957. PubMed ID: 34350477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms.
    Vilain S; Pretorius JM; Theron J; Brözel VS
    Appl Environ Microbiol; 2009 May; 75(9):2861-8. PubMed ID: 19251901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enterotoxigenic profiles and submerged and interface biofilms in Bacillus cereus group isolates from foods.
    Cruz-Facundo IM; Adame-Gómez R; Castro-Alarcón N; Toribio-Jiménez J; Castro-Coronel Y; Santiago-Dionisio MC; Leyva-Vázquez MA; Tafolla-Venegas D; Ramírez-Peralta A
    Rev Argent Microbiol; 2023; 55(3):262-271. PubMed ID: 37019800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens.
    Simões LC; Lemos M; Araújo P; Pereira AM; Simões M
    Biofouling; 2011 Mar; 27(3):337-46. PubMed ID: 21512918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.
    Bais HP; Fall R; Vivanco JM
    Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of biofilm composition on the resistance to detachment.
    Simões M; Cleto S; Pereira MO; Vieira MJ
    Water Sci Technol; 2007; 55(8-9):473-80. PubMed ID: 17547019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxin Profile, Biofilm Formation, and Molecular Characterization of Emetic Toxin-Producing Bacillus cereus Group Isolates from Human Stools.
    Oh SK; Chang HJ; Choi SW; Ok G; Lee N
    Foodborne Pathog Dis; 2015 Nov; 12(11):914-20. PubMed ID: 26287636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Electrolyzed Water on the Disinfection of Bacillus cereus Biofilms: The Mechanism of Enhanced Resistance of Sessile Cells in the Biofilm Matrix.
    Hussain MS; Kwon M; Tango CN; Oh DH
    J Food Prot; 2018 May; 81(5):860-869. PubMed ID: 29667430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce.
    Elhariry HM
    Food Microbiol; 2011 Oct; 28(7):1266-74. PubMed ID: 21839375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacillus cereus Biofilms-Same, Only Different.
    Majed R; Faille C; Kallassy M; Gohar M
    Front Microbiol; 2016; 7():1054. PubMed ID: 27458448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.