BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25829070)

  • 1. Decreased vesicular storage and aldehyde dehydrogenase activity in multiple system atrophy.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Sharabi Y; Mash DC
    Parkinsonism Relat Disord; 2015 Jun; 21(6):567-72. PubMed ID: 25829070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson's disease.
    Goldstein DS; Sullivan P; Holmes C; Miller GW; Alter S; Strong R; Mash DC; Kopin IJ; Sharabi Y
    J Neurochem; 2013 Sep; 126(5):591-603. PubMed ID: 23786406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma biomarkers of decreased vesicular storage distinguish Parkinson disease with orthostatic hypotension from the parkinsonian form of multiple system atrophy.
    Goldstein DS; Kopin IJ; Sharabi Y; Holmes C
    Clin Auton Res; 2015 Feb; 25(1):61-7. PubMed ID: 25638582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease.
    Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Kopin IJ; Sharabi Y
    J Neurochem; 2015 Apr; 133(1):14-25. PubMed ID: 25645689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The heart of PD: Lewy body diseases as neurocardiologic disorders.
    Goldstein DS; Sharabi Y
    Brain Res; 2019 Jan; 1702():74-84. PubMed ID: 29030055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catechols in post-mortem brain of patients with Parkinson disease.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Basile MJ; Mash DC
    Eur J Neurol; 2011 May; 18(5):703-10. PubMed ID: 21073636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated cerebrospinal fluid ratios of cysteinyl-dopamine/3,4-dihydroxyphenylacetic acid in parkinsonian synucleinopathies.
    Goldstein DS; Holmes C; Sullivan P; Jinsmaa Y; Kopin IJ; Sharabi Y
    Parkinsonism Relat Disord; 2016 Oct; 31():79-86. PubMed ID: 27474472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases.
    Goldstein DS
    Semin Neurol; 2020 Oct; 40(5):502-514. PubMed ID: 32906170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of denervation-independent depletion of putamen dopamine in Parkinson's disease and multiple system atrophy.
    Goldstein DS; Sullivan P; Holmes C; Mash DC; Kopin IJ; Sharabi Y
    Parkinsonism Relat Disord; 2017 Feb; 35():88-91. PubMed ID: 28034624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catecholaldehyde hypothesis: where MAO fits in.
    Goldstein DS
    J Neural Transm (Vienna); 2020 Feb; 127(2):169-177. PubMed ID: 31807952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarkers, mechanisms, and potential prevention of catecholamine neuron loss in Parkinson disease.
    Goldstein DS
    Adv Pharmacol; 2013; 68():235-72. PubMed ID: 24054148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus.
    Taylor TN; Alter SP; Wang M; Goldstein DS; Miller GW
    Neuropharmacology; 2014 Jan; 76 Pt A(0 0):97-105. PubMed ID: 24025942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease.
    Landau R; Halperin R; Sullivan P; Zibly Z; Leibowitz A; Goldstein DS; Sharabi Y
    Dis Model Mech; 2022 Jan; 15(1):. PubMed ID: 34842277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vesicular sequestration to oxidative deamination shift in myocardial sympathetic nerves in Parkinson's disease.
    Goldstein DS; Sullivan P; Holmes C; Miller GW; Sharabi Y; Kopin IJ
    J Neurochem; 2014 Oct; 131(2):219-28. PubMed ID: 24848581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-chronic increase in striatal level of 3,4-dihydroxyphenylacetaldehyde does not result in alteration of nigrostriatal dopaminergic neurones.
    Legros H; Janin F; Dourmap N; Bonnet JJ; Costentin J
    J Neurosci Res; 2004 Feb; 75(3):429-35. PubMed ID: 14743456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease.
    Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Sullivan R; Gross DJ; Holmes C; Kopin IJ; Sharabi Y
    J Neurochem; 2012 Dec; 123(6):932-43. PubMed ID: 22906103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential abnormalities of cerebrospinal fluid dopaminergic versus noradrenergic indices in synucleinopathies.
    Goldstein DS; Sullivan P; Holmes C; Lamotte G; Lenka A; Sharabi Y
    J Neurochem; 2021 Jul; 158(2):554-568. PubMed ID: 33894018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydroxyphenylacetaldehyde Lowering Treatment Improves Locomotor and Neurochemical Abnormalities in the Rat Rotenone Model: Relevance to the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson's Disease.
    Khashab R; Gutman-Sharabi N; Shabtai Z; Landau R; Halperin R; Fay-Karmon T; Leibowitz A; Sharabi Y
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Catecholaldehyde Hypothesis for the Pathogenesis of Catecholaminergic Neurodegeneration: What We Know and What We Do Not Know.
    Goldstein DS
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.