BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25829149)

  • 1. Methemoglobin reduction by NADH-cytochrome b(5) reductase in Propsilocerus akamusi larvae.
    Maeda S; Kobori H; Tanigawa M; Sato K; Yubisui T; Hori H; Nagata Y
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jul; 185():54-61. PubMed ID: 25829149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methemoglobin reduction mediated by D-amino acid dehydrogenase in Propsilocerus akamusi (Tokunaga) larvae.
    Kobori H; Tanigawa M; Maeda S; Hori H; Yubisui T; Nagata Y
    J Insect Physiol; 2015 Jun; 77():33-8. PubMed ID: 25896287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methemoglobin reductase activity in intact fish red blood cells.
    Jensen FB; Nielsen K
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Feb; 216():14-19. PubMed ID: 29133139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5.
    Kurian JR; Chin NA; Longlais BJ; Hayes KL; Trepanier LA
    Chem Res Toxicol; 2006 Oct; 19(10):1366-73. PubMed ID: 17040106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content.
    Zerez CR; Lachant NA; Tanaka KR
    Blood; 1990 Sep; 76(5):1008-14. PubMed ID: 2393709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methemoglobin pathophysiology.
    Jaffé ER
    Prog Clin Biol Res; 1981; 51():133-51. PubMed ID: 7022466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of cytochrome b5 reductase from the house fly, Musca domestica.
    Zhang M; Scott JG
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Jan; 113(1):175-83. PubMed ID: 8936052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of the naturally fused CS and cytochrome b
    Benson DR; Lovell S; Mehzabeen N; Galeva N; Cooper A; Gao P; Battaile KP; Zhu H
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):628-638. PubMed ID: 31282472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes.
    Yubisui T; Takeshita M
    J Biochem; 1982 May; 91(5):1467-77. PubMed ID: 7096301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascaris suum NADH-methemo(myo)globin reductase systems recovering differential functions of hemoglobin and myoglobin, adapting to environmental hypoxia.
    Takamiya S; Hashimoto M; Kazuno S; Kikkawa M; Yamakura F
    Parasitol Int; 2009 Sep; 58(3):278-84. PubMed ID: 19332145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation study of methemoglobin reduction in erythrocytes. Differential contributions of two pathways to tolerance to oxidative stress.
    Kinoshita A; Nakayama Y; Kitayama T; Tomita M
    FEBS J; 2007 Mar; 274(6):1449-58. PubMed ID: 17489100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on methemoglobin reduction by human red cell NADH cytochrome b5 reductase.
    Tomoda A; Yubisui T; Tsuji A; Yoneyama Y
    J Biol Chem; 1979 Apr; 254(8):3119-23. PubMed ID: 429336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells.
    Zhu H; Qiu H; Yoon HW; Huang S; Bunn HF
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14742-7. PubMed ID: 10611283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH-dependent methemoglobin reductase from the obligate aerobe Vitreoscilla: improved method of purification and reexamination of prosthetic groups.
    Jakob W; Webster DA; Kroneck PM
    Arch Biochem Biophys; 1992 Jan; 292(1):29-33. PubMed ID: 1309298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of NADH-dependent cytochrome b5 reductase activity and in vitro methemoglobin induction by sodium nitrite in Oncorhynchus mykiss, Salmo salar, and Salvelinus fontinalis.
    McConkey S; Saunders J; Speare DJ
    Fish Physiol Biochem; 2013 Jun; 39(3):713-9. PubMed ID: 23079863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.