These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25830201)

  • 1. Axisymmetric multicomponent vesicles: A comparison of hydrodynamic and geometric models.
    Sohn J; Li S; Li X; Lowengrub JS
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):346-68. PubMed ID: 25830201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of multicomponent vesicles in a viscous fluid.
    Sohn JS; Tseng YH; Li S; Voigt A; Lowengrub JS
    J Comput Phys; 2010; 229(1):119-144. PubMed ID: 20808718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission.
    Lowengrub JS; Rätz A; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031926. PubMed ID: 19391990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules.
    Lowengrub J; Allard J; Aland S
    J Comput Phys; 2016 Mar; 309():112-128. PubMed ID: 26869729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffuse interface models of locally inextensible vesicles in a viscous fluid.
    Aland S; Egerer S; Lowengrub J; Voigt A
    J Comput Phys; 2014 Nov; 277():32-47. PubMed ID: 25246712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric and potential driving formation and evolution of biomolecular surfaces.
    Bates PW; Chen Z; Sun Y; Wei GW; Zhao S
    J Math Biol; 2009 Aug; 59(2):193-231. PubMed ID: 18941751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
    Yan W; Mortensen NA; Wubs M
    Opt Express; 2013 Jun; 21(12):15026-36. PubMed ID: 23787690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The way from microscopic many-particle theory to macroscopic hydrodynamics.
    Haussmann R
    J Phys Condens Matter; 2016 Mar; 28(11):113001. PubMed ID: 26902659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.
    Yousaf M; Ghaffar T; Qamar S
    PLoS One; 2015; 10(6):e0128698. PubMed ID: 26070067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology.
    Harshe YM; Ehrl L; Lattuada M
    J Colloid Interface Sci; 2010 Dec; 352(1):87-98. PubMed ID: 20832075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigations of the dynamics of two-component vesicles.
    Taniguchi T; Yanagisawa M; Imai M
    J Phys Condens Matter; 2011 Jul; 23(28):284103. PubMed ID: 21709319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicomponent and multiphase modeling and simulation of reactive wetting.
    Villanueva W; Grönhagen K; Amberg G; Agren J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056313. PubMed ID: 18643167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate computation of traveling wavefronts in a biological hydrodynamic model.
    Mansour MB
    Comput Biol Med; 2013 Jun; 43(5):405-8. PubMed ID: 23566386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics.
    Tsumura K; Kunihiro T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053008. PubMed ID: 23767621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic hydrodynamics from the projection operator method.
    Minami Y; Hidaka Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023007. PubMed ID: 23496610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique.
    Zounemat-Kermani M; Scholz M; Tondar MM
    Environ Technol; 2015; 36(20):2532-47. PubMed ID: 25835065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy.
    Lu D; Ramzan M; Ullah N; Chung JD; Farooq U
    Sci Rep; 2017 Dec; 7(1):17008. PubMed ID: 29208975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.