These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25830547)

  • 1. "Why Not Stoichiometry" versus "Stoichiometry—Why Not?" Part III: Extension of GATES/GEB on Complex Dynamic Redox Systems.
    Michałowska-Kaczmarczyk AM; Michałowski T; Toporek M; Asuero AG
    Crit Rev Anal Chem; 2015; 45(4):348-66. PubMed ID: 25830547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Why not stoichiometry" versus "Stoichiometry--why not?" Part II: GATES in context with redox systems.
    Michałowska-Kaczmarczyk AM; Asuero AG; Toporek M; Michałowski T
    Crit Rev Anal Chem; 2015; 45(3):241-69. PubMed ID: 25849824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Why not stoichiometry" versus "stoichiometry--why not?" Part I: General context.
    Michałowska-Kaczmarczyk AM; Asuero AG; Michałowski T
    Crit Rev Anal Chem; 2015; 45(2):166-88. PubMed ID: 25558777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Fe(III)-ligand properties on effectiveness of modified photo-Fenton processes.
    Aplin R; Feitz AJ; Waite TD
    Water Sci Technol; 2001; 44(5):23-30. PubMed ID: 11695464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic reduction of ROOH by iron porphyrins.
    Collman JP; Kaplun M; Sunderland CJ; Boulatov R
    J Am Chem Soc; 2004 Sep; 126(36):11166-7. PubMed ID: 15355094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mononuclear non-heme high-spin iron(III)-hydroperoxo complex as an active oxidant in sulfoxidation reactions.
    Kim YM; Cho KB; Cho J; Wang B; Li C; Shaik S; Nam W
    J Am Chem Soc; 2013 Jun; 135(24):8838-41. PubMed ID: 23721290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of three members of the electron-transfer series [Fe(pda)2]n (n=2-, 1-, 0) by spectroscopy and density functional theoretical calculations [pda=redox non-innocent derivatives of N,N'-bis(pentafluorophenyl)-o-phenylenediamide(2-, 1.-, 0)].
    Khusniyarov MM; Bill E; Weyhermüller T; Bothe E; Harms K; Sundermeyer J; Wieghardt K
    Chemistry; 2008; 14(25):7608-22. PubMed ID: 18601237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.
    Sowden RJ; Trotter KD; Dunbar L; Craig G; Erdemli O; Spickett CM; Reglinski J
    Biometals; 2013 Feb; 26(1):85-96. PubMed ID: 23160798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex.
    Aliaga ME; Carrasco-Pozo C; López-Alarcón C; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2011 Jan; 19(1):534-41. PubMed ID: 21115254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments.
    Wu T; Shelobolina E; Xu H; Konishi H; Kukkadapu R; Roden EE
    Environ Sci Technol; 2012 Nov; 46(21):11618-26. PubMed ID: 23061986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-iodometry: a new potentiometric method.
    Gottardi W; Pfleiderer J
    Anal Bioanal Chem; 2005 Jul; 382(5):1328-38. PubMed ID: 15981007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism.
    Zhang T; Zhu H; Croué JP
    Environ Sci Technol; 2013 Mar; 47(6):2784-91. PubMed ID: 23439015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry.
    Filipský T; Říha M; Hrdina R; Vávrová K; Mladěnka P
    Bioorg Chem; 2013 Aug; 49():1-8. PubMed ID: 23832103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine.
    Zou J; Ma J; Chen L; Li X; Guan Y; Xie P; Pan C
    Environ Sci Technol; 2013 Oct; 47(20):11685-91. PubMed ID: 24033112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme ferrous-hydroperoxo complexes: some theoretical considerations.
    Silaghi-Dumitrescu R
    Arch Biochem Biophys; 2004 Apr; 424(2):137-40. PubMed ID: 15047185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide reduction of a disulfide: a model of intracellular redox modulation?
    Peterson DA; Archer SL; Weir EK
    Biochem Biophys Res Commun; 1994 May; 200(3):1586-91. PubMed ID: 8185613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-heme iron(II/III) complexes that model the reactivity of lipoxygenase with a redox switch.
    Mei F; Ou C; Wu G; Cao L; Han F; Meng X; Li J; Li D; Liao Z
    Dalton Trans; 2010 May; 39(18):4267-9. PubMed ID: 20422083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.