These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25830639)

  • 61. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt.
    Brown DG; Allen C
    Mol Microbiol; 2004 Sep; 53(6):1641-60. PubMed ID: 15341645
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.
    Zhao S; Chen X; Deng S; Dong X; Song A; Yao J; Fang W; Chen F
    Molecules; 2016 Apr; 21(4):526. PubMed ID: 27110753
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microbial Network and Soil Properties Are Changed in Bacterial Wilt-Susceptible Soil.
    Qi G; Ma G; Chen S; Lin C; Zhao X
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003986
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems.
    Luan H; Gao W; Huang S; Tang J; Li M; Zhang H; Chen X; Masiliūnas D
    PLoS One; 2020; 15(2):e0214041. PubMed ID: 32084129
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato.
    Agarwal H; Dowarah B; Baruah PM; Bordoloi KS; Krishnatreya DB; Agarwala N
    Microbiol Res; 2020 Sep; 238():126503. PubMed ID: 32497966
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites.
    Lou H; Wang X; Chen J; Wang B; Wang W
    Can J Microbiol; 2018 Nov; 64(11):816-825. PubMed ID: 29852076
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato.
    Yamamoto S; Shiraishi S; Kawagoe Y; Mochizuki M; Suzuki S
    Pest Manag Sci; 2015 May; 71(5):722-7. PubMed ID: 24889125
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Using the Ralstonia solanacearum Tat secretome to identify bacterial wilt virulence factors.
    González ET; Brown DG; Swanson JK; Allen C
    Appl Environ Microbiol; 2007 Jun; 73(12):3779-86. PubMed ID: 17468289
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum.
    Wang K; Chen D; Liu Q; Zhu P; Sun M; Peng D
    Curr Microbiol; 2022 Jul; 79(9):245. PubMed ID: 35834130
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.
    Lowe-Power TM; Hendrich CG; von Roepenack-Lahaye E; Li B; Wu D; Mitra R; Dalsing BL; Ricca P; Naidoo J; Cook D; Jancewicz A; Masson P; Thomma B; Lahaye T; Michael AJ; Allen C
    Environ Microbiol; 2018 Apr; 20(4):1330-1349. PubMed ID: 29215193
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato.
    Hyakumachi M; Nishimura M; Arakawa T; Asano S; Yoshida S; Tsushima S; Takahashi H
    Microbes Environ; 2013; 28(1):128-34. PubMed ID: 23257909
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biochar Suppresses Bacterial Wilt of Tomato by Improving Soil Chemical Properties and Shifting Soil Microbial Community.
    Gao Y; Lu Y; Lin W; Tian J; Cai K
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835630
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antagonistic Activity of Volatile Organic Compounds Produced by Acid-Tolerant Pseudomonas protegens CLP-6 as Biological Fumigants To Control Tobacco Bacterial Wilt Caused by Ralstonia solanacearum.
    Zhao Q; Cao J; Cai X; Wang J; Kong F; Wang D; Wang J
    Appl Environ Microbiol; 2023 Feb; 89(2):e0189222. PubMed ID: 36722969
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Application of Bioorganic Fertilizer on
    Shi R; Wang S; Xiong B; Gu H; Wang H; Ji C; Jia W; Horowitz AR; Zhen W; Asher JB; He X
    Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208730
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.
    Huang CN; Lin CP; Hsieh FC; Lee SK; Cheng KC; Liu CT
    World J Microbiol Biotechnol; 2016 Nov; 32(11):183. PubMed ID: 27646210
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biocontrol of
    Chen Y; Xu Y; Zhou T; Akkaya MS; Wang L; Li S; Li X
    3 Biotech; 2020 Feb; 10(2):80. PubMed ID: 32099731
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In Silico and In Vitro Analyses of Glucosamine and Indole Acetaldehyde Inhibit Pathogenic Regulator Gene phcA of Ralstonia solanacearum, a Causative Agent of Bacterial Wilt of Tomato.
    Jinal HN; Amaresan N
    Appl Biochem Biotechnol; 2020 Sep; 192(1):230-242. PubMed ID: 32367442
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides.
    Chen M; Wang J; Liu B; Zhu Y; Xiao R; Yang W; Ge C; Chen Z
    BMC Microbiol; 2020 Jun; 20(1):160. PubMed ID: 32539679
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant-microbe interactions in saline-sodic soil.
    Chen Z; Li Y; Hu M; Xiong Y; Huang Q; Jin S; Huang G
    Sci Total Environ; 2023 Jun; 879():163113. PubMed ID: 36966830
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Insight into how fertilization strategies increase quality of grape (Kyoho) and shift microbial community.
    Li X; Chu C; Ding S; Wei H; Wu S; Xie B
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):27182-27194. PubMed ID: 34978035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.