BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25830708)

  • 41. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents.
    Okita Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2011 Feb; 12(2):518-22. PubMed ID: 21190342
    [No Abstract]   [Full Text] [Related]  

  • 44. Interconversion of the Ialpha and Ibeta crystalline forms of cellulose by bending.
    Jarvis MC
    Carbohydr Res; 2000 Apr; 325(2):150-4. PubMed ID: 10795822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D; Saito T; Isogai A
    Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laccase complex with polyvinylamine bearing grafted TEMPO is a cellulose adhesion primer.
    Liu J; Pelton R; Obermeyer JM; Esser A
    Biomacromolecules; 2013 Aug; 14(8):2953-60. PubMed ID: 23841801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges.
    Lin N; Bruzzese C; Dufresne A
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4948-59. PubMed ID: 22950801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges.
    Chiulan I; Panaitescu DM; Radu ER; Vizireanu S; Sătulu V; Biţă B; Gabor RA; Nicolae CA; Raduly M; Rădiţoiu V
    Carbohydr Polym; 2021 Nov; 272():118458. PubMed ID: 34420718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading.
    Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.
    Milanovic J; Schiehser S; Milanovic P; Potthast A; Kostic M
    Carbohydr Polym; 2013 Oct; 98(1):444-50. PubMed ID: 23987366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hirshfeld surface analysis of the intermolecular interaction networks in cellulose Iα and Iβ.
    Krichen F; Walha S; Abdelmouleh M
    Carbohydr Res; 2022 Aug; 518():108600. PubMed ID: 35660257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles.
    Li Q; Renneckar S
    Biomacromolecules; 2011 Mar; 12(3):650-9. PubMed ID: 21210665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and antibacterial properties of epsilon-poly- l-lysine grafted multi-functional cellulose beads.
    Nie C; Shen T; Hu W; Ma Q; Zhang J; Hu S; Tian H; Wu H; Luo X; Wang J
    Carbohydr Polym; 2021 Jun; 262():117902. PubMed ID: 33838793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of structural, thermal and proton conductivity properties of micro- and nanocelluloses.
    Jankowska I; Pankiewicz R; Pogorzelec-Glaser K; Ławniczak P; Łapiński A; Tritt-Goc J
    Carbohydr Polym; 2018 Nov; 200():536-542. PubMed ID: 30177195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study on TEMPO-Mediated Oxidation of
    Li A; Xue Q; Ye Y; Gong P; Deng M; Jiang B
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.