These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25831155)

  • 21. Impact of the next-generation sequencing data depth on various biological result inferences.
    Hou R; Yang Z; Li M; Xiao H
    Sci China Life Sci; 2013 Feb; 56(2):104-9. PubMed ID: 23393025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A benchmark of hemoglobin blocking during library preparation for mRNA-Sequencing of human blood samples.
    Uellendahl-Werth F; Wolfien M; Franke A; Wolkenhauer O; Ellinghaus D
    Sci Rep; 2020 Mar; 10(1):5630. PubMed ID: 32221409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-seq differential expression studies: more sequence or more replication?
    Liu Y; Zhou J; White KP
    Bioinformatics; 2014 Feb; 30(3):301-4. PubMed ID: 24319002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blocking of targeted microRNAs from next-generation sequencing libraries.
    Roberts BS; Hardigan AA; Kirby MK; Fitz-Gerald MB; Wilcox CM; Kimberly RP; Myers RM
    Nucleic Acids Res; 2015 Dec; 43(21):e145. PubMed ID: 26209131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of Small RNA NGS Libraries from Biofluids.
    Etheridge A; Wang K; Baxter D; Galas D
    Methods Mol Biol; 2018; 1740():163-175. PubMed ID: 29388143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inexpensive multiplexed library preparation for megabase-sized genomes.
    Baym M; Kryazhimskiy S; Lieberman TD; Chung H; Desai MM; Kishony R
    PLoS One; 2015; 10(5):e0128036. PubMed ID: 26000737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of RNA sequencing to evaluate rheumatic disease patients.
    Giannopoulou EG; Elemento O; Ivashkiv LB
    Arthritis Res Ther; 2015 Jul; 17(1):167. PubMed ID: 26126608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A short-read multiplex sequencing method for reliable, cost-effective and high-throughput genotyping in large-scale studies.
    Cao H; Wang Y; Zhang W; Chai X; Zhang X; Chen S; Yang F; Zhang C; Guo Y; Liu Y; Tang Z; Chen C; Xue Y; Zhen H; Xu Y; Rao B; Liu T; Zhao M; Zhang W; Li Y; Zhang X; Tellier LC; Krogh A; Kristiansen K; Wang J; Li J
    Hum Mutat; 2013 Dec; 34(12):1715-20. PubMed ID: 24014314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene Expression Analysis in the Age of Mass Sequencing: An Introduction.
    Pilarsky C; Nanduri LK; Roy J
    Methods Mol Biol; 2016; 1381():67-73. PubMed ID: 26667455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cost-effective method for high-throughput construction of illumina sequencing libraries.
    Dunham JP; Friesen ML
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):820-34. PubMed ID: 24003196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology: steps for a successful application.
    Soares AR; Pereira PM; Santos MA
    Methods Mol Biol; 2012; 822():189-204. PubMed ID: 22144200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Marrying microfluidics and microwells for parallel, high-throughput single-cell genomics.
    Wadsworth MH; Hughes TK; Shalek AK
    Genome Biol; 2015 Jun; 16(1):129. PubMed ID: 26087845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small RNA library construction for high-throughput sequencing.
    McGinn J; Czech B
    Methods Mol Biol; 2014; 1093():195-208. PubMed ID: 24178567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing.
    Kawano M; Kawazu C; Lizio M; Kawaji H; Carninci P; Suzuki H; Hayashizaki Y
    Biotechniques; 2010 Oct; 49(4):751-5. PubMed ID: 20964636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments.
    Heyer EE; Ozadam H; Ricci EP; Cenik C; Moore MJ
    Nucleic Acids Res; 2015 Jan; 43(1):e2. PubMed ID: 25505164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing.
    Mai Z; Xiao C; Jin J; Zhang G
    Sci Rep; 2017 Apr; 7(1):1053. PubMed ID: 28432352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico HLA Typing Using Standard RNA-Seq Sequence Reads.
    Boegel S; Scholtalbers J; Löwer M; Sahin U; Castle JC
    Methods Mol Biol; 2015; 1310():247-58. PubMed ID: 26024640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next-generation sequencing applied to flower development: RNA-seq.
    He J; Jiao Y
    Methods Mol Biol; 2014; 1110():401-11. PubMed ID: 24395272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the RNA landscape by RNAome sequencing.
    Derks KW; Misovic B; van den Hout MC; Kockx CE; Gomez CP; Brouwer RW; Vrieling H; Hoeijmakers JH; van IJcken WF; Pothof J
    RNA Biol; 2015; 12(1):30-42. PubMed ID: 25826412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capture and Amplification by Tailing and Switching (CATS). An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA.
    Turchinovich A; Surowy H; Serva A; Zapatka M; Lichter P; Burwinkel B
    RNA Biol; 2014; 11(7):817-28. PubMed ID: 24922482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.