BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25831231)

  • 1. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.
    Wexselblatt E; Esko JD; Tor Y
    ACS Nano; 2015; 9(4):3961-8. PubMed ID: 25831231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of Cargo to Lysosomes Using GNeosomes.
    Hamill KM; Wexselblatt E; Tong W; Esko JD; Tor Y
    Methods Mol Biol; 2017; 1594():151-163. PubMed ID: 28456981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendrimeric Guanidinoneomycin for Cellular Delivery of Bio-macromolecules.
    Sganappa A; Wexselblatt E; Bellucci MC; Esko JD; Tedeschi G; Tor Y; Volonterio A
    Chembiochem; 2017 Jan; 18(1):119-125. PubMed ID: 27806190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photoCORM nanocarrier for CO release using NIR light.
    Pierri AE; Huang PJ; Garcia JV; Stanfill JG; Chui M; Wu G; Zheng N; Ford PC
    Chem Commun (Camb); 2015 Feb; 51(11):2072-5. PubMed ID: 25532627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.
    Chhabra R; Grabrucker AM; Veratti P; Belletti D; Boeckers TM; Vandelli MA; Forni F; Tosi G; Ruozi B
    Int J Pharm; 2014 Aug; 471(1-2):349-57. PubMed ID: 24882034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.
    Deka SR; Yadav S; Mahato M; Sharma AK
    Colloids Surf B Biointerfaces; 2015 Nov; 135():150-157. PubMed ID: 26255160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes.
    Logan R; Kong A; Krise JP
    J Pharm Sci; 2013 Nov; 102(11):4173-80. PubMed ID: 23970383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs.
    Cajot S; Van Butsele K; Paillard A; Passirani C; Garcion E; Benoit JP; Varshney SK; Jérôme C
    Acta Biomater; 2012 Dec; 8(12):4215-23. PubMed ID: 22963850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent encapsulation stabilities in supramolecular nanoassemblies.
    Jiwpanich S; Ryu JH; Bickerton S; Thayumanavan S
    J Am Chem Soc; 2010 Aug; 132(31):10683-5. PubMed ID: 20681699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of an active lysosomal enzyme using GNeosomes.
    Hamill KM; Wexselblatt E; Tong W; Esko JD; Tor Y
    J Mater Chem B; 2016 Sep; 4(35):5794-5797. PubMed ID: 32263750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Organelle Replacement Therapy Using a Stearyl-Polyhistidine Peptide against Lysosomal Storage Disease Cells.
    Hayashi T; Okamoto R; Kawano T; Iwasaki T
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of lysosomes by liposomes modified with octadecyl-rhodamine B.
    Koshkaryev A; Thekkedath R; Pagano C; Meerovich I; Torchilin VP
    J Drug Target; 2011 Sep; 19(8):606-14. PubMed ID: 21275828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs.
    Lu J; Liong M; Zink JI; Tamanoi F
    Small; 2007 Aug; 3(8):1341-6. PubMed ID: 17566138
    [No Abstract]   [Full Text] [Related]  

  • 15. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2015 May; 219():27-53. PubMed ID: 25747522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics.
    Xiong F; Chen Y; Chen J; Yang B; Zhang Y; Gao H; Hua Z; Gu N
    J Control Release; 2013 Dec; 172(3):993-1001. PubMed ID: 24096016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization.
    Jin H; Lovell JF; Chen J; Ng K; Cao W; Ding L; Zhang Z; Zheng G
    Photochem Photobiol Sci; 2011 May; 10(5):810-6. PubMed ID: 21344108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large molecular aggregates: From atmospheric aerosols to drug nanoparticles.
    Firanescu G; Hermsdorf D; Ueberschaer R; Signorell R
    Phys Chem Chem Phys; 2006 Sep; 8(36):4149-65. PubMed ID: 16971983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery.
    Nuhn L; Hirsch M; Krieg B; Koynov K; Fischer K; Schmidt M; Helm M; Zentel R
    ACS Nano; 2012 Mar; 6(3):2198-214. PubMed ID: 22381078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers.
    Di Meo C; Montanari E; Manzi L; Villani C; Coviello T; Matricardi P
    Carbohydr Polym; 2015 Jan; 115():502-9. PubMed ID: 25439925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.