These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25831257)

  • 1. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.
    Nelson AW; Eitrheim ES; Knight AW; May D; Mehrhoff MA; Shannon R; Litman R; Burnett WC; Forbes TZ; Schultz MK
    Environ Health Perspect; 2015 Jul; 123(7):689-96. PubMed ID: 25831257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of naturally-occurring radionuclides (NORM) in Marcellus Shale produced fluids influenced by chemical matrix.
    Nelson AW; Johns AJ; Eitrheim ES; Knight AW; Basile M; Bettis EA; Schultz MK; Forbes TZ
    Environ Sci Process Impacts; 2016 Apr; 18(4):456-63. PubMed ID: 26952871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What's NORMal for Fracking? Estimating Total Radioactivity of Produced Fluids.
    Konkel L
    Environ Health Perspect; 2015 Jul; 123(7):A186. PubMed ID: 26131685
    [No Abstract]   [Full Text] [Related]  

  • 4. Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes.
    Thakur P; Ward AL; Schaub TM
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43058-43071. PubMed ID: 35091928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
    Jodłowski P; Macuda J; Nowak J; Nguyen Dinh C
    J Environ Radioact; 2017 Sep; 175-176():34-38. PubMed ID: 28431375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.
    Ying L; O'Connor F; Stolz JF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(5):511-5. PubMed ID: 25734826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid method to determine
    Ajemigbitse MA; Cannon FS; Warner NR
    J Environ Radioact; 2020 Sep; 220-221():106300. PubMed ID: 32560888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of NORM in the oil industry from eastern and western deserts of Egypt.
    Shawky S; Amer H; Nada AA; El-Maksoud TM; Ibrahiem NM
    Appl Radiat Isot; 2001 Jul; 55(1):135-9. PubMed ID: 11339530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and Analysis of Liquid Waste from Marcellus Shale Gas Development.
    Shih JS; Saiers JE; Anisfeld SC; Chu Z; Muehlenbachs LA; Olmstead SM
    Environ Sci Technol; 2015 Aug; 49(16):9557-65. PubMed ID: 26140412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.
    Allard DJ
    Health Phys; 2015 Feb; 108(2):178. PubMed ID: 25551500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.
    Nelson AW; Knight AW; Eitrheim ES; Schultz MK
    J Environ Radioact; 2015 Apr; 142():24-8. PubMed ID: 25622134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal methods for preparation, separation, and determination of radium isotopes in environmental and biological samples.
    Thakur P; Ward AL; González-Delgado AM
    J Environ Radioact; 2021 Mar; 228():106522. PubMed ID: 33360557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).
    Rich AL; Crosby EC
    New Solut; 2013; 23(1):117-35. PubMed ID: 23552651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development.
    Walter GR; Benke RR; Pickett DA
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1040-9. PubMed ID: 23019818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental evaluation of radioactivity levels and associated radiation hazards in groundwater around the WIPP site.
    He R; Liaw S; Zhou M; Zhou XD; Luo H
    Ecotoxicol Environ Saf; 2022 Sep; 242():113849. PubMed ID: 35809394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity concentrations of
    Wilke FDH; Schettler G; Vieth-Hillebrand A; Kühn M; Rothe H
    J Environ Radioact; 2018 Oct; 190-191():122-129. PubMed ID: 29783196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing.
    He C; Zhang T; Vidic RD
    Water Res; 2016 Nov; 104():425-431. PubMed ID: 27579871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of Radium in Marcellus Shale Flowback Water Impoundments and Assessment of Associated Health Risks.
    Zhang T; Hammack RW; Vidic RD
    Environ Sci Technol; 2015 Aug; 49(15):9347-54. PubMed ID: 26154523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.
    Kondash AJ; Warner NR; Lahav O; Vengosh A
    Environ Sci Technol; 2014 Jan; 48(2):1334-42. PubMed ID: 24367969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.
    Zhang T; Bain D; Hammack R; Vidic RD
    Environ Sci Technol; 2015 Mar; 49(5):2969-76. PubMed ID: 25642997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.