These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25831277)

  • 1. Label-free imaging of melanoma with nonlinear photothermal microscopy.
    He J; Miyazaki J; Wang N; Tsurui H; Kobayashi T
    Opt Lett; 2015 Apr; 40(7):1141-4. PubMed ID: 25831277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source.
    He J; Miyazaki J; Wang N; Tsurui H; Kobayashi T
    Opt Express; 2015 Apr; 23(8):9762-71. PubMed ID: 25969015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection.
    Miyazaki J; Tsurui H; Kawasumi K; Kobayashi T
    Opt Lett; 2015 Feb; 40(4):479-82. PubMed ID: 25680129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes.
    Miyazaki J; Kawasumi K; Kobayashi T
    Rev Sci Instrum; 2014 Sep; 85(9):093703. PubMed ID: 25273732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy.
    Min W; Lu S; Chong S; Roy R; Holtom GR; Xie XS
    Nature; 2009 Oct; 461(7267):1105-9. PubMed ID: 19847261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues.
    Miyazaki J; Tsurui H; Kawasumi K; Kobayashi T
    Opt Express; 2014 Aug; 22(16):18833-42. PubMed ID: 25320969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.
    Zhang D; Li C; Zhang C; Slipchenko MN; Eakins G; Cheng JX
    Sci Adv; 2016 Sep; 2(9):e1600521. PubMed ID: 27704043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.
    Lin SS; Hwang SK; Liu JM
    Opt Express; 2014 Feb; 22(4):4152-60. PubMed ID: 24663739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton coherence domain molecular imaging with pump-probe optical coherence microscopy.
    Wan Q; Applegate BE
    Opt Lett; 2010 Feb; 35(4):532-4. PubMed ID: 20160808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution.
    Samolis PD; Sander MY
    Opt Express; 2019 Feb; 27(3):2643-2655. PubMed ID: 30732299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C; Bocchio NL; Bouwens A; Villiger M; Berclaz C; Goulley J; Gibson MI; Santschi C; Lasser T
    Opt Express; 2012 Sep; 20(19):21385-99. PubMed ID: 23037262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pump-probe optical microscopy for imaging nonfluorescent chromophores.
    Wei L; Min W
    Anal Bioanal Chem; 2012 Jun; 403(8):2197-202. PubMed ID: 22411535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterodyne detected nonlinear optical imaging in a lock-in free manner.
    Slipchenko MN; Oglesbee RA; Zhang D; Wu W; Cheng JX
    J Biophotonics; 2012 Oct; 5(10):801-7. PubMed ID: 22389310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive noise canceling for transient absorption microscopy.
    Wang E; Gupta S; Wilson J
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33058592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Imaging of Melanoma with Confocal Photothermal Microscopy: Differentiation between Malignant and Benign Tissue.
    Kobayashi T; Nakata K; Yajima I; Kato M; Tsurui H
    Bioengineering (Basel); 2018 Aug; 5(3):. PubMed ID: 30111721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy.
    Miyazaki J; Tsurui H; Kawasumi K; Kobayashi T
    Opt Express; 2015 Feb; 23(3):3647-56. PubMed ID: 25836217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical fiber-based single-shot picosecond transient absorption spectroscopy.
    Cook AR; Shen Y
    Rev Sci Instrum; 2009 Jul; 80(7):073106. PubMed ID: 19655942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous loss versus stimulation gain in pump-probe microscopy: a proof of concept demonstration.
    Das S; Rehman KU; Zhuo GY; Kao FJ
    J Biomed Opt; 2020 Mar; 25(3):1-11. PubMed ID: 32170858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging.
    Deng S; Chen J; Huang Q; Fan C; Cheng Y
    Opt Lett; 2010 Dec; 35(23):3862-4. PubMed ID: 21124546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.