These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25831349)

  • 1. In vivo molecular contrast OCT imaging of methylene blue.
    Kim W; Applegate BE
    Opt Lett; 2015 Apr; 40(7):1426-9. PubMed ID: 25831349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo pump-probe optical coherence tomography imaging in Xenopus laevis.
    Carrasco-Zevallos O; Shelton RL; Kim W; Pearson J; Applegate BE
    J Biophotonics; 2015 Jan; 8(1-2):25-35. PubMed ID: 24282110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular contrast in optical coherence tomography by use of a pump-probe technique.
    Rao KD; Choma MA; Yazdanfar S; Rollins AM; Izatt JA
    Opt Lett; 2003 Mar; 28(5):340-2. PubMed ID: 12659437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography.
    Palma-Chavez JA; Kim W; Serafino M; Jo JA; Charoenphol P; Applegate BE
    Biomed Opt Express; 2020 Aug; 11(8):4255-4274. PubMed ID: 32923040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network for enhancing signal-to-noise ratio and contrast in photothermal optical coherence tomography.
    Salimi M; Tabatabaei N; Villiger M
    Sci Rep; 2024 May; 14(1):10264. PubMed ID: 38704427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography.
    Adler DC; Huang SW; Huber R; Fujimoto JG
    Opt Express; 2008 Mar; 16(7):4376-93. PubMed ID: 18542535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo.
    Cui D; Liu X; Zhang J; Yu X; Ding S; Luo Y; Gu J; Shum P; Liu L
    Opt Lett; 2014 Dec; 39(23):6727-30. PubMed ID: 25490663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin.
    Jacob D; Shelton RL; Applegate BE
    Opt Express; 2010 Jun; 18(12):12399-410. PubMed ID: 20588366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common-path-based device for magnetomotive OCT noise reduction.
    Ma Z; Liu X; Yin B; Zhao Y; Liu J; Yu Y; Wang Y
    Appl Opt; 2020 Feb; 59(5):1431-1437. PubMed ID: 32225400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton microcomb based spectral domain optical coherence tomography.
    Marchand PJ; Riemensberger J; Skehan JC; Ho JJ; Pfeiffer MHP; Liu J; Hauger C; Lasser T; Kippenberg TJ
    Nat Commun; 2021 Jan; 12(1):427. PubMed ID: 33462200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Domain Optical Coherence Tomography: An In Vivo Imaging Protocol for Assessing Retinal Morphology in Adult Zebrafish.
    Toms M; Tracey-White D; Muhundhakumar D; Sprogyte L; Dubis AM; Moosajee M
    Zebrafish; 2017 Apr; 14(2):118-125. PubMed ID: 28051361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME; Faber DJ; Verbraak FD; van Leeuwen TG; de Smet MD
    Prog Retin Eye Res; 2007 Jan; 26(1):57-77. PubMed ID: 17158086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions.
    Liu C; Wong A; Fieguth P; Bizheva K; Bie H
    BMC Med Imaging; 2014 Oct; 14():37. PubMed ID: 25319186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model.
    Winkler AM; Rice PF; Weichsel J; Watson JM; Backer MV; Backer JM; Barton JK
    Mol Imaging Biol; 2011 Dec; 13(6):1173-82. PubMed ID: 21042865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indocyanine green provides absorption and spectral contrast for optical coherence tomography at 840  nm in vivo.
    Merkle CW; Augustin M; Harper DJ; Baumann B
    Opt Lett; 2020 Apr; 45(8):2359-2362. PubMed ID: 32287239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal regeneration following OCT-guided laser injury in zebrafish.
    DiCicco RM; Bell BA; Kaul C; Hollyfield JG; Anand-Apte B; Perkins BD; Tao YK; Yuan A
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6281-8. PubMed ID: 25205862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus.
    Li K; Liang W; Mavadia-Shukla J; Park HC; Li D; Yuan W; Wan S; Li X
    J Biophotonics; 2019 Mar; 12(3):e201800205. PubMed ID: 30302923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Müller Glia Cell Activation in a Laser-induced Retinal Degeneration and Regeneration Model in Zebrafish.
    Conedera FM; Arendt P; Trepp C; Tschopp M; Enzmann V
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.
    Liu X; Yang Y; Shi X; Li K
    J Hazard Mater; 2015; 283():267-75. PubMed ID: 25285998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.