These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25831372)

  • 1. Enhancing near-infrared light absorption in PtSi thin films for Schottky barrier IR detectors using moth-eye surface structures.
    Lora Gonzalez F; Gordon MJ
    Opt Lett; 2015 Apr; 40(7):1512-5. PubMed ID: 25831372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared detection based on the excitation of hot electrons in Au/Si microcone array.
    Zhang Z; Yan J; You J; Zhu Y; Wang L; Zhong Z; Jiang Z
    Nanotechnology; 2024 Jul; 35(40):. PubMed ID: 38991504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature plasmonic mid-infrared photodetector based on PtSi/p-Si low Schottky-barrier junction.
    Shiraishi M; Noda D; Ohta R; Kan T
    Appl Opt; 2022 May; 61(14):3987-3996. PubMed ID: 36256071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications.
    Gonzalez FL; Morse DE; Gordon MJ
    Opt Lett; 2014 Jan; 39(1):13-6. PubMed ID: 24365809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin Au surface plasmon waveguide Schottky detectors on p-Si.
    Berini P; Olivieri A; Chen C
    Nanotechnology; 2012 Nov; 23(44):444011. PubMed ID: 23080540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the external quantum efficiency of Schottky barrier photodetectors through thin copper films.
    Seok J; Jin Y; Yu K
    Opt Express; 2023 Nov; 31(23):38578-38588. PubMed ID: 38017960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectance of semitransparent platinum films on various substrates in the vacuum ultraviolet.
    Hass G; Ramsey JB; Hunter WR
    Appl Opt; 1969 Nov; 8(11):2255-9. PubMed ID: 20076008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an uncooled mid-infrared Schottky photodetector based on a 2D Au/PtSi/p-Si nanohole array at a higher light modulation frequency.
    Abadi A; Abubakr E; Oshita M; Noda D; Ohta R; Kan T
    Appl Opt; 2024 Mar; 63(8):2046-2055. PubMed ID: 38568646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-solution-processed Si films with broadband and omnidirectional light absorption.
    Park Y; Ahn H; Lee KT; Kim JH; Nam M; Cho J; Han JS; Kim SK; Ko DH
    Nanotechnology; 2019 Oct; 30(40):405202. PubMed ID: 31242465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a metasurface deflector for guided absorption enhancement in a Si PIN photodiode.
    Tsubokawa M; Saif Islam M
    Opt Express; 2024 Jun; 32(12):21121-21133. PubMed ID: 38859474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.
    Gonzalez FL; Gordon MJ
    Opt Express; 2014 Jun; 22(11):12808-16. PubMed ID: 24921476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the optical properties of an infrared blocked impurity band detector.
    Woods SI; Kaplan SG; Jung TM; Carter AC
    Appl Opt; 2011 Aug; 50(24):4824-33. PubMed ID: 21857706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Filtering Monochromatic Infrared Detectors Based on Bi
    Pan X; He J; Gao L; Li H
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light transmission and internal scattering in pulsed laser-etched partially-transparent silicon wafers.
    Rohaizar MH; Sepeai S; Surhada N; Ludin NA; Ibrahim MA; Sopian K; Zaidi SH
    Heliyon; 2019 Nov; 5(11):e02790. PubMed ID: 31768436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.
    Jayasinghe RC; Perera AG; Zhu H; Zhao Y
    Opt Lett; 2012 Oct; 37(20):4302-4. PubMed ID: 23073444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical modeling of nanocrystalline TiO2 films.
    Usami A; Ozaki H
    J Phys Chem B; 2005 Feb; 109(7):2591-6. PubMed ID: 16851262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices.
    Lin YC; Lu KC; Wu WW; Bai J; Chen LJ; Tu KN; Huang Y
    Nano Lett; 2008 Mar; 8(3):913-8. PubMed ID: 18266331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive gas magnetron sputtering of lithium hydride and lithium fluoride thin films.
    Thompson GB; Allred DD
    J Xray Sci Technol; 1997 Jan; 7(2):159-70. PubMed ID: 21307547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.