These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25832028)

  • 1. Probing the electron capture dissociation mass spectrometry of phosphopeptides with traveling wave ion mobility spectrometry and molecular dynamics simulations.
    Kim D; Pai PJ; Creese AJ; Jones AW; Russell DH; Cooper HJ
    J Am Soc Mass Spectrom; 2015 Jun; 26(6):1004-13. PubMed ID: 25832028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Analysis of 14-3-3-ζ-Derived Phosphopeptides Using Electron Capture Dissociation Mass Spectrometry, Traveling Wave Ion Mobility Spectrometry, and Molecular Modeling.
    Simmonds AL; Lopez-Clavijo AF; Winn PJ; Russell DH; Styles IB; Cooper HJ
    J Phys Chem B; 2020 Jan; 124(3):461-469. PubMed ID: 31859508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron capture dissociation of singly and multiply phosphorylated peptides.
    Stensballe A; Jensen ON; Olsen JV; Haselmann KF; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(19):1793-800. PubMed ID: 11006587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high-resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides.
    Xuan Y; Creese AJ; Horner JA; Cooper HJ
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):1963-9. PubMed ID: 19504484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry.
    Shi SD; Hemling ME; Carr SA; Horn DM; Lindh I; McLafferty FW
    Anal Chem; 2001 Jan; 73(1):19-22. PubMed ID: 11195502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphopeptide anion characterization via sequential charge inversion and electron-transfer dissociation.
    Gunawardena HP; Emory JF; McLuckey SA
    Anal Chem; 2006 Jun; 78(11):3788-93. PubMed ID: 16737238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of charge state and amino acid composition on hydrogen transfer in electron capture dissociation of peptides.
    Nishikaze T; Takayama M
    J Am Soc Mass Spectrom; 2010 Dec; 21(12):1979-88. PubMed ID: 20869879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of phosphorylation on the electron capture dissociation of peptide ions.
    Creese AJ; Cooper HJ
    J Am Soc Mass Spectrom; 2008 Sep; 19(9):1263-74. PubMed ID: 18585055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Radical-Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis.
    Jang I; Jeon A; Lim SG; Hong DK; Kim MS; Jo JH; Lee ST; Moon B; Oh HB
    J Am Soc Mass Spectrom; 2019 Mar; 30(3):538-547. PubMed ID: 30414067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase structure of amyloid-β (12-28) peptide investigated by infrared spectroscopy, electron capture dissociation and ion mobility mass spectrometry.
    Le TN; Poully JC; Lecomte F; Nieuwjaer N; Manil B; Desfrançois C; Chirot F; Lemoine J; Dugourd P; van der Rest G; Grégoire G
    J Am Soc Mass Spectrom; 2013 Dec; 24(12):1937-49. PubMed ID: 24043520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural structural motifs that suppress peptide ion fragmentation after electron capture.
    Chan WY; Chan TW
    J Am Soc Mass Spectrom; 2010 Jul; 21(7):1235-44. PubMed ID: 20434361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target.
    Hayakawa S; Hashimoto M; Nagao H; Awazu K; Toyoda M; Ichihara T; Shigeri Y
    Rapid Commun Mass Spectrom; 2008; 22(4):567-72. PubMed ID: 18229886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium.
    Commodore JJ; Cassady CJ
    J Mass Spectrom; 2018 Dec; 53(12):1178-1188. PubMed ID: 30221809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry.
    Sweet SM; Bailey CM; Cunningham DL; Heath JK; Cooper HJ
    Mol Cell Proteomics; 2009 May; 8(5):904-12. PubMed ID: 19131326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry.
    Thalassinos K; Grabenauer M; Slade SE; Hilton GR; Bowers MT; Scrivens JH
    Anal Chem; 2009 Jan; 81(1):248-54. PubMed ID: 19117454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-capture dissociation and collision-induced dissociation of lanthanide metal-ligand complexes and lanthanide metal-ligand complexes bound to phosphopeptides.
    Mosely JA; Murray BS; Parker D
    Eur J Mass Spectrom (Chichester); 2009; 15(2):145-55. PubMed ID: 19423900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2.
    Sweet SM; Mardakheh FK; Ryan KJ; Langton AJ; Heath JK; Cooper HJ
    Anal Chem; 2008 Sep; 80(17):6650-7. PubMed ID: 18683950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipole-guided electron capture causes abnormal dissociations of phosphorylated pentapeptides.
    Moss CL; Chung TW; Wyer JA; Nielsen SB; Hvelplund P; Tureček F
    J Am Soc Mass Spectrom; 2011 Apr; 22(4):731-51. PubMed ID: 21472611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ping-pong protons: how hydrogen-bonding networks facilitate heterolytic bond cleavage in peptide radical cations.
    Zhurov KO; Wodrich MD; Corminboeuf C; Tsybin YO
    J Phys Chem B; 2014 Mar; 118(10):2628-37. PubMed ID: 24555737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.