BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25832082)

  • 1. Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.
    Gou S; Wang Y; Wu J; Lee P; Sheng K
    Med Phys; 2015 Apr; 42(4):1917-25. PubMed ID: 25832082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition.
    Wang X; Chen H; Wan Q; Li Y; Cai N; Li X; Peng Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2095-2105. PubMed ID: 32654016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of respiratory motion variability and tumor size on the accuracy of average intensity projection from four-dimensional computed tomography: an investigation based on dynamic MRI.
    Cai J; Read PW; Sheng K
    Med Phys; 2008 Nov; 35(11):4974-81. PubMed ID: 19070231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI.
    Tolouee A; Alirezaie J; Babyn P
    MAGMA; 2018 Feb; 31(1):33-47. PubMed ID: 28569375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating dynamic magnetic resonance imaging (MRI) for lung tumor tracking based on low-rank decomposition in the spatial-temporal domain: a feasibility study based on simulation and preliminary prospective undersampled MRI.
    Sarma M; Hu P; Rapacchi S; Ennis D; Thomas A; Lee P; Kupelian P; Sheng K
    Int J Radiat Oncol Biol Phys; 2014 Mar; 88(3):723-31. PubMed ID: 24412430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal tensor dictionary learning for accelerated dynamic MRI.
    Huang J; Zhou G; Yu G
    Med Biol Eng Comput; 2019 Sep; 57(9):1933-1946. PubMed ID: 31254175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier decomposition pulmonary MRI using a variable flip angle balanced steady-state free precession technique.
    Corteville DM; Kjïrstad Å; Henzler T; Zöllner FG; Schad LR
    Magn Reson Med; 2015 May; 73(5):1999-2004. PubMed ID: 24845240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Dynamic MRI Reconstruction Using Adaptive Sequentially Truncated Higher-Order Singular Value Decomposition.
    Li Y; Shen Q; Jiang M; Zhu L; Li Y; Wang P; Li TQ
    Curr Med Imaging; 2022; 18(7):719-730. PubMed ID: 35240962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Local SVD Denoising of MRI Based on Sparse Representations.
    Leal N; Zurek E; Leal E
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved robust tensor principal component analysis for accelerating dynamic MR imaging reconstruction.
    Jiang M; Shen Q; Li Y; Yang X; Zhang J; Wang Y; Xia L
    Med Biol Eng Comput; 2020 Jul; 58(7):1483-1498. PubMed ID: 32372326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chest tomosynthesis deblurring using CNN with deconvolution layer for vertebrae segmentation.
    Choi Y; Jang H; Baek J
    Med Phys; 2023 Dec; 50(12):7714-7730. PubMed ID: 37401539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI artifact correction using sparse + low-rank decomposition of annihilating filter-based hankel matrix.
    Jin KH; Um JY; Lee D; Lee J; Park SH; Ye JC
    Magn Reson Med; 2017 Jul; 78(1):327-340. PubMed ID: 27464787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing.
    Moeller S; Pisharady PK; Ramanna S; Lenglet C; Wu X; Dowdle L; Yacoub E; Uğurbil K; Akçakaya M
    Neuroimage; 2021 Feb; 226():117539. PubMed ID: 33186723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
    Nakarmi U; Wang Y; Lyu J; Liang D; Ying L
    IEEE Trans Med Imaging; 2017 Nov; 36(11):2297-2307. PubMed ID: 28692970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation.
    Karakatsanis NA; Tsoumpas C; Zaidi H
    Comput Med Imaging Graph; 2017 Sep; 60():11-21. PubMed ID: 27887989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dictionary learning and time sparsity in dynamic MRI.
    Caballero J; Rueckert D; Hajnal JV
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):256-63. PubMed ID: 23285559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble Dictionary Learning for Single Image Deblurring via Low-Rank Regularization.
    Li J; Liu Z
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.