BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25832174)

  • 1. Crystal structures of Mycobacterial MeaB and MMAA-like GTPases.
    Edwards TE; Baugh L; Bullen J; Baydo RO; Witte P; Thompkins K; Phan IQ; Abendroth J; Clifton MC; Sankaran B; Van Voorhis WC; Myler PJ; Staker BL; Grundner C; Lorimer DD
    J Struct Funct Genomics; 2015 Jun; 16(2):91-9. PubMed ID: 25832174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of interaction between the G-protein chaperone, MeaB, and B12-dependent methylmalonyl-CoA mutase.
    Padovani D; Labunska T; Banerjee R
    J Biol Chem; 2006 Jun; 281(26):17838-44. PubMed ID: 16641088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria.
    Hubbard PA; Padovani D; Labunska T; Mahlstedt SA; Banerjee R; Drennan CL
    J Biol Chem; 2007 Oct; 282(43):31308-16. PubMed ID: 17728257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoinhibition and signaling by the switch II motif in the G-protein chaperone of a radical B12 enzyme.
    Lofgren M; Koutmos M; Banerjee R
    J Biol Chem; 2013 Oct; 288(43):30980-9. PubMed ID: 23996001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone.
    Padovani D; Banerjee R
    Biochemistry; 2006 Aug; 45(30):9300-6. PubMed ID: 16866376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation.
    Korotkova N; Lidstrom ME
    J Biol Chem; 2004 Apr; 279(14):13652-8. PubMed ID: 14734568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery.
    Vaccaro FA; Born DA; Drennan CL
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2214085120. PubMed ID: 36787360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch I-dependent allosteric signaling in a G-protein chaperone-B
    Campanello GC; Lofgren M; Yokom AL; Southworth DR; Banerjee R
    J Biol Chem; 2017 Oct; 292(43):17617-17625. PubMed ID: 28882898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Expression of a cDNA Encoding Methylmalonic Aciduria Type A Protein from Euglena gracilis Z.
    Yabuta Y; Takamatsu R; Kasagaki S; Watanabe F
    Metabolites; 2013 Feb; 3(1):144-54. PubMed ID: 24957894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IcmF is a fusion between the radical B12 enzyme isobutyryl-CoA mutase and its G-protein chaperone.
    Cracan V; Padovani D; Banerjee R
    J Biol Chem; 2010 Jan; 285(1):655-66. PubMed ID: 19864421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase.
    Vaccaro FA; Faber DA; Andree GA; Born DA; Kang G; Fonseca DR; Jost M; Drennan CL
    J Biol Chem; 2023 Sep; 299(9):105109. PubMed ID: 37517695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycobacterium thermoresistibile as a source of thermostable orthologs of Mycobacterium tuberculosis proteins.
    Edwards TE; Liao R; Phan I; Myler PJ; Grundner C
    Protein Sci; 2012 Jul; 21(7):1093-6. PubMed ID: 22544630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK.
    Mishra S; Jakkala K; Srinivasan R; Arumugam M; Ranjeri R; Gupta P; Rajeswari H; Ajitkumar P
    PLoS One; 2015; 10(12):e0143677. PubMed ID: 26630542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switch III motif relays signaling between a B12 enzyme and its G-protein chaperone.
    Lofgren M; Padovani D; Koutmos M; Banerjee R
    Nat Chem Biol; 2013 Sep; 9(9):535-9. PubMed ID: 23873214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the structural coverage of tuberculosis drug targets.
    Baugh L; Phan I; Begley DW; Clifton MC; Armour B; Dranow DM; Taylor BM; Muruthi MM; Abendroth J; Fairman JW; Fox D; Dieterich SH; Staker BL; Gardberg AS; Choi R; Hewitt SN; Napuli AJ; Myers J; Barrett LK; Zhang Y; Ferrell M; Mundt E; Thompkins K; Tran N; Lyons-Abbott S; Abramov A; Sekar A; Serbzhinskiy D; Lorimer D; Buchko GW; Stacy R; Stewart LJ; Edwards TE; Van Voorhis WC; Myler PJ
    Tuberculosis (Edinb); 2015 Mar; 95(2):142-8. PubMed ID: 25613812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and functional implications of LprF from Mycobacterium tuberculosis and M. bovis.
    Kim JS; Jiao L; Oh JI; Ha NC; Kim YH
    Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2619-30. PubMed ID: 25286846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis.
    Lama A; Pawaria S; Dikshit KL
    FEBS Lett; 2006 Jul; 580(17):4031-41. PubMed ID: 16814781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases.
    Chopra P; Koduri H; Singh R; Koul A; Ghildiyal M; Sharma K; Tyagi AK; Singh Y
    FEBS Lett; 2004 Jul; 571(1-3):212-6. PubMed ID: 15280044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the conserved GTPase domain of the signal recognition particle.
    Freymann DM; Keenan RJ; Stroud RM; Walter P
    Nature; 1997 Jan; 385(6614):361-4. PubMed ID: 9002524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.