These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25832211)

  • 1. An ion trap built with photonic crystal fibre technology.
    Lindenfelser F; Keitch B; Kienzler D; Bykov D; Uebel P; Schmidt MA; Russell PS; Home JP
    Rev Sci Instrum; 2015 Mar; 86(3):033107. PubMed ID: 25832211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-fabricated stylus ion trap.
    Arrington CL; McKay KS; Baca ED; Coleman JJ; Colombe Y; Finnegan P; Hite DA; Hollowell AE; Jördens R; Jost JD; Leibfried D; Rowen AM; Warring U; Weides M; Wilson AC; Wineland DJ; Pappas DP
    Rev Sci Instrum; 2013 Aug; 84(8):085001. PubMed ID: 24007096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabricated surface-electrode ion trap for scalable quantum information processing.
    Seidelin S; Chiaverini J; Reichle R; Bollinger JJ; Leibfried D; Britton J; Wesenberg JH; Blakestad RB; Epstein RJ; Hume DB; Itano WM; Jost JD; Langer C; Ozeri R; Shiga N; Wineland DJ
    Phys Rev Lett; 2006 Jun; 96(25):253003. PubMed ID: 16907302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of heating rates in cryogenic surface-electrode ion traps.
    Labaziewicz J; Ge Y; Antohi P; Leibrandt D; Brown KR; Chuang IL
    Phys Rev Lett; 2008 Jan; 100(1):013001. PubMed ID: 18232755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular cryostat for ion trapping with surface-electrode ion traps.
    Vittorini G; Wright K; Brown KR; Harter AW; Doret SC
    Rev Sci Instrum; 2013 Apr; 84(4):043112. PubMed ID: 23635186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the radiation dose detection sensitivity of optical fibres.
    Bradley DA; Mahdiraji GA; Ghomeishi M; Dermosesian E; Adikan FR; Rashid HA; Maah MJ
    Appl Radiat Isot; 2015 Jun; 100():43-9. PubMed ID: 25533626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps.
    Cetina M; Grier AT; Vuletić V
    Phys Rev Lett; 2012 Dec; 109(25):253201. PubMed ID: 23368457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface trap with dc-tunable ion-electrode distance.
    An D; Matthiesen C; Abdelrahman A; Berlin-Udi M; Gorman D; Möller S; Urban E; Häffner H
    Rev Sci Instrum; 2018 Sep; 89(9):093102. PubMed ID: 30278688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated surface ion trap on a high-finesse optical mirror.
    Herskind PF; Wang SX; Shi M; Ge Y; Cetina M; Chuang IL
    Opt Lett; 2011 Aug; 36(16):3045-7. PubMed ID: 21847154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of electrode surface roughness and its impact on ion trap mass analysis.
    Xu W; Chappell WJ; Cooks RG; Ouyang Z
    J Mass Spectrom; 2009 Mar; 44(3):353-60. PubMed ID: 19021150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolved-Sideband Laser Cooling in a Penning Trap.
    Goodwin JF; Stutter G; Thompson RC; Segal DM
    Phys Rev Lett; 2016 Apr; 116(14):143002. PubMed ID: 27104702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halo ion trap mass spectrometer.
    Austin DE; Wang M; Tolley SE; Maas JD; Hawkins AR; Rockwood AL; Tolley HD; Lee ED; Lee ML
    Anal Chem; 2007 Apr; 79(7):2927-32. PubMed ID: 17335180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip.
    Sterling RC; Rattanasonti H; Weidt S; Lake K; Srinivasan P; Webster SC; Kraft M; Hensinger WK
    Nat Commun; 2014 Apr; 5():3637. PubMed ID: 24704758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.
    Mivelle M; Viktorovitch P; Baida FI; El Eter A; Xie Z; Vo TP; Atie E; Burr GW; Nedeljkovic D; Rauch JY; Callard S; Grosjean T
    Opt Express; 2014 Jun; 22(12):15075-87. PubMed ID: 24977600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps.
    Tian Y; Higgs J; Li A; Barney B; Austin DE
    J Mass Spectrom; 2014 Mar; 49(3):233-40. PubMed ID: 24619549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode-hop-free photonic crystal laser fabricated by holographic exposure technology.
    Zhang C; Wang B; Liang S; Zhu H; Wang W
    Opt Lett; 2014 May; 39(10):2892-5. PubMed ID: 24978230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling and suppression of anomalous heating in ion traps.
    Deslauriers L; Olmschenk S; Stick D; Hensinger WK; Sterk J; Monroe C
    Phys Rev Lett; 2006 Sep; 97(10):103007. PubMed ID: 17025815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines for Designing Surface Ion Traps Using the Boundary Element Method.
    Hong S; Lee M; Cheon H; Kim T; Cho DI
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity.
    Williams GO; Chen JS; Euser TG; Russell PS; Jones AC
    Lab Chip; 2012 Sep; 12(18):3356-61. PubMed ID: 22767267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.