These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25832224)

  • 1. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.
    Price CJ; Donnelly TD; Giltrap S; Stuart NH; Parker S; Patankar S; Lowe HF; Drew D; Gumbrell ET; Smith RA
    Rev Sci Instrum; 2015 Mar; 86(3):033502. PubMed ID: 25832224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System.
    Wang X; Zhu Q; Hu M; Li W; Chen X; Li N; Zhu X; Hu H
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping and Raman spectroscopy of solid particles.
    Rkiouak L; Tang MJ; Camp JC; McGregor J; Watson IM; Cox RA; Kalberer M; Ward AD; Pope FD
    Phys Chem Chem Phys; 2014 Jun; 16(23):11426-34. PubMed ID: 24803083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-image acquisition-based distance sensor using agile laser spot beam.
    Riza NA; Amin MJ
    Appl Opt; 2014 Sep; 53(25):5807-14. PubMed ID: 25321381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps.
    Conangla GP; Rica RA; Quidant R
    Nano Lett; 2020 Aug; 20(8):6018-6023. PubMed ID: 32692184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field.
    Hasegawa K; Murata M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap.
    Power R; Reid JP; Anand S; McGloin D; Almohammedi A; Mistry NS; Hudson AJ
    J Phys Chem A; 2012 Sep; 116(35):8873-84. PubMed ID: 22867108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.
    David G; Esat K; Hartweg S; Cremer J; Chasovskikh E; Signorell R
    J Chem Phys; 2015 Apr; 142(15):154506. PubMed ID: 25903896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long Working-Distance Optical Trap for in Situ Analysis of Contact-Induced Phase Transformations.
    Davis RD; Lance S; Gordon JA; Tolbert MA
    Anal Chem; 2015 Jun; 87(12):6186-94. PubMed ID: 25961113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared Laser-induced Temperature Elevation in Optically-trapped Aqueous Droplets in Air.
    Ishizaka S; Ma J; Fujiwara T; Yamauchi K; Kitamura N
    Anal Sci; 2016; 32(4):425-30. PubMed ID: 27063715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferring cold atoms in double magneto-optical trap by a continuous-wave transfer laser beam with large red detuning.
    Wang J; Wang J; Yan S; Geng T; Zhang T
    Rev Sci Instrum; 2008 Dec; 79(12):123116. PubMed ID: 19123554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Lehmann Rotation of Achiral Nematic Liquid Crystal Droplets Trapped under Linearly Polarized Optical Tweezers.
    Kiang-Ia J; Taeudomkul R; Prajongtat P; Tin P; Pattanaporkratana A; Chattham N
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis.
    Carruthers AE; Walker JS; Casey A; Orr-Ewing AJ; Reid JP
    Phys Chem Chem Phys; 2012 May; 14(19):6741-8. PubMed ID: 22476508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D2AM, a beamline with a high-intensity point-focusing fixed-exit monochromator for multiwavelength anomalous diffraction experiments.
    Ferrer JL; Simon JP; Bérar JF; Caillot B; Fanchon E; Kaïkati O; Arnaud S; Guidotti M; Pirocchi M; Roth M
    J Synchrotron Radiat; 1998 Nov; 5(Pt 6):1346-56. PubMed ID: 16687847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens.
    Zhu W; Eckerskorn N; Upadhya A; Li L; Rode AV; Lee WM
    Biomed Opt Express; 2016 Jul; 7(7):2902-11. PubMed ID: 27446715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical levitation measurements with intensity-modulated light beams.
    Cai W; Li F; Sun S; Wang Y
    Appl Opt; 1997 Oct; 36(30):7860-3. PubMed ID: 18264313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Trapping of High-Aspect-Ratio NaYF Hexagonal Prisms for kHz-MHz Gravitational Wave Detectors.
    Winstone G; Wang Z; Klomp S; Felsted GR; Laeuger A; Gupta C; Grass D; Aggarwal N; Sprague J; Pauzauskie PJ; Larson SL; Kalogera V; Geraci AA;
    Phys Rev Lett; 2022 Jul; 129(5):053604. PubMed ID: 35960566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper Limit of Light-Levitated Droplet Motion.
    Li H; Jiao L; Chen R; Zhu X; Yang Y; Ye D; Wang H; Yang Y; Liao Q
    Anal Chem; 2021 Dec; 93(48):16008-16016. PubMed ID: 34797649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whirl-enhanced continuous wave laser trapping of particles.
    Bartkiewicz S; Miniewicz A
    Phys Chem Chem Phys; 2015 Jan; 17(2):1077-83. PubMed ID: 25412568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.