These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25832485)

  • 1. One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation.
    Mynard JP; Smolich JJ
    Ann Biomed Eng; 2015 Jun; 43(6):1443-60. PubMed ID: 25832485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hemodynamic model of the arm arteriovenous circulation to study hemodynamics of native arteriovenous fistula and the distal revascularization and interval ligation procedure.
    Varble N; Day S; Phillips D; Mix D; Schwarz K; Illig KA; Chandra A
    J Vasc Surg; 2014 May; 59(5):1410-7. PubMed ID: 23845661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction.
    Heusinkveld MHG; Huberts W; Lumens J; Arts T; Delhaas T; Reesink KD
    PLoS Comput Biol; 2019 Jul; 15(7):e1007173. PubMed ID: 31306411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 1D computer model of the arterial circulation in horses: An important resource for studying global interactions between heart and vessels under normal and pathological conditions.
    Vera L; Campos Arias D; Muylle S; Stergiopulos N; Segers P; van Loon G
    PLoS One; 2019; 14(8):e0221425. PubMed ID: 31433827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation.
    Mynard JP; Penny DJ; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H517-28. PubMed ID: 24363304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pyNS: an open-source framework for 0D haemodynamic modelling.
    Manini S; Antiga L; Botti L; Remuzzi A
    Ann Biomed Eng; 2015 Jun; 43(6):1461-73. PubMed ID: 25549775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow.
    Kim HJ; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Jul; 38(7):2314-30. PubMed ID: 20352333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific modeling of blood flow and pressure in human coronary arteries.
    Kim HJ; Vignon-Clementel IE; Coogan JS; Figueroa CA; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Oct; 38(10):3195-209. PubMed ID: 20559732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A mathematical model of hemodynamic processes for distal pulse wave formation].
    Fedotov AA
    Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network.
    Flores J; Alastruey J; Corvera Poiré E
    Ann Biomed Eng; 2016 Oct; 44(10):3047-3068. PubMed ID: 27138525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reservoir-wave separation and wave intensity analysis applied to carotid arteries: a hybrid 1D model to understand haemodynamics.
    Aguado-Sierra J; Davies JE; Hadjiloizou N; Francis D; Mayet J; Hughes AD; Parker KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1381-4. PubMed ID: 19162925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systolic hypertension mechanisms: effect of global and local proximal aorta stiffening on pulse pressure.
    Reymond P; Westerhof N; Stergiopulos N
    Ann Biomed Eng; 2012 Mar; 40(3):742-9. PubMed ID: 22016326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes.
    Murillo J; García-Navarro P
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3751. PubMed ID: 38018384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.
    Kroon W; Huberts W; Bosboom M; van de Vosse F
    Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introduction to wave intensity analysis.
    Parker KH
    Med Biol Eng Comput; 2009 Feb; 47(2):175-88. PubMed ID: 19205773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model.
    Guan D; Liang F; Gremaud PA
    J Biomech; 2016 Jun; 49(9):1583-1592. PubMed ID: 27062594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support.
    Ruiz P; Rezaienia MA; Rahideh A; Keeble TR; Rothman MT; Korakianitis T
    Artif Organs; 2013 Jun; 37(6):549-60. PubMed ID: 23758568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
    Yigit B; Pekkan K
    J R Soc Interface; 2016 Jan; 13(114):20151019. PubMed ID: 26819334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.