These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25832825)

  • 1. Measurement of shrinkage and cracking in lyophilized amorphous cakes, part 3: hydrophobic vials and the question of adhesion.
    Ullrich S; Seyferth S; Lee G
    J Pharm Sci; 2015 Jun; 104(6):2040-2046. PubMed ID: 25832825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Shrinkage and Cracking in Lyophilized Amorphous Cakes. Part II: Kinetics.
    Ullrich S; Seyferth S; Lee G
    Pharm Res; 2015 Aug; 32(8):2503-15. PubMed ID: 25652671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part I: final-product assessment.
    Ullrich S; Seyferth S; Lee G
    J Pharm Sci; 2015 Jan; 104(1):155-64. PubMed ID: 25421825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part IV: Effects of freezing protocol.
    Ullrich S; Seyferth S; Lee G
    Int J Pharm; 2015 Nov; 495(1):52-57. PubMed ID: 26325321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and compressional mechanical properties of freeze-dried mannitol, sucrose, and trehalose cakes.
    Devi S; Williams D
    J Pharm Sci; 2013 Dec; 102(12):4246-55. PubMed ID: 24122457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key factors governing the reconstitution time of high concentration lyophilized protein formulations.
    Kulkarni SS; Patel SM; Suryanarayanan R; Rinella JV; Bogner RH
    Eur J Pharm Biopharm; 2021 Aug; 165():361-373. PubMed ID: 33974974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution Time for Highly Concentrated Lyophilized Proteins: Role of Formulation and Protein.
    Kulkarni SS; Patel SM; Bogner RH
    J Pharm Sci; 2020 Oct; 109(10):2975-2985. PubMed ID: 32534031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture sorption behavior of selected bulking agents used in lyophilized products.
    Fakes MG; Dali MV; Haby TA; Morris KR; Varia SA; Serajuddin AT
    PDA J Pharm Sci Technol; 2000; 54(2):144-9. PubMed ID: 10822985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split-Cakes, Still Delicious.
    Lam P; Patapoff TW
    PDA J Pharm Sci Technol; 2019; 73(1):16-29. PubMed ID: 30158240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humidity induced collapse in freeze dried cakes: A direct visualization study using DVS.
    Duralliu A; Matejtschuk P; Williams DR
    Eur J Pharm Biopharm; 2018 Jun; 127():29-36. PubMed ID: 29408372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Techniques to Characterize Cake Appearance of Freeze-Dried Products.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    J Pharm Sci; 2018 Nov; 107(11):2810-2822. PubMed ID: 30005985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating factors leading to fogging of glass vials in lyophilized drug products.
    Abdul-Fattah AM; Oeschger R; Roehl H; Bauer Dauphin I; Worgull M; Kallmeyer G; Mahler HC
    Eur J Pharm Biopharm; 2013 Oct; 85(2):314-26. PubMed ID: 23791681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing process influences cake appearance of a lyophilized amorphous protein formulation with low solid content and high fill configuration.
    Lu X; Kulkarni SS; Dong H; Tang Y; Yi L; Gupta S
    Int J Pharm; 2023 Apr; 636():122803. PubMed ID: 36894041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.
    Esfandiary R; Gattu SK; Stewart JM; Patel SM
    J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Texture Analysis Technique to Assess the Freeze-Dried Cakes in Vials.
    Hackl EV; Ermolina I
    J Pharm Sci; 2016 Jul; 105(7):2073-85. PubMed ID: 27290623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations.
    Kulkarni SS; Suryanarayanan R; Rinella JV; Bogner RH
    Eur J Pharm Biopharm; 2018 Oct; 131():70-81. PubMed ID: 30056143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.
    Gieseler H; Lee G
    J Pharm Sci; 2009 Sep; 98(9):3447-55. PubMed ID: 19603505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Merits and Limitations of Dynamic Vapor Sorption Studies on the Morphology and Physicochemical State of Freeze-Dried Products.
    Kunz C; Gieseler H
    J Pharm Sci; 2018 Aug; 107(8):2179-2191. PubMed ID: 29698727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.