BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25832926)

  • 21. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interhemispheric sensorimotor integration; an upper limb phenomenon?
    Ruddy KL; Jaspers E; Keller M; Wenderoth N
    Neuroscience; 2016 Oct; 333():104-13. PubMed ID: 27425210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction.
    Hannah R; Rothwell JC
    Brain Stimul; 2017; 10(1):106-115. PubMed ID: 28029595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deficit of sensorimotor integration in normal aging.
    Degardin A; Devos D; Cassim F; Bourriez JL; Defebvre L; Derambure P; Devanne H
    Neurosci Lett; 2011 Jul; 498(3):208-12. PubMed ID: 21600958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF).
    Peurala SH; Müller-Dahlhaus JF; Arai N; Ziemann U
    Clin Neurophysiol; 2008 Oct; 119(10):2291-7. PubMed ID: 18723394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary motor cortex hyperexcitability in Fabry's disease.
    Ortu E; Fancellu L; Sau G; Falchi P; Traccis S; Pes GM; Ganau A; Sechi G
    Clin Neurophysiol; 2013 Jul; 124(7):1381-9. PubMed ID: 23474053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of short-interval intracortical inhibition on short-interval intracortical facilitation in human primary motor cortex.
    Shirota Y; Hamada M; Terao Y; Matsumoto H; Ohminami S; Furubayashi T; Nakatani-Enomoto S; Ugawa Y; Hanajima R
    J Neurophysiol; 2010 Sep; 104(3):1382-91. PubMed ID: 20505127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between high-frequency activity in the cortical sensory and the motor hand areas, and their myelin content.
    Tomasevic L; Siebner HR; Thielscher A; Manganelli F; Pontillo G; Dubbioso R
    Brain Stimul; 2022; 15(3):717-726. PubMed ID: 35525389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conditioning intensity-dependent interaction between short-latency interhemispheric inhibition and short-latency afferent inhibition.
    Tsutsumi R; Shirota Y; Ohminami S; Terao Y; Ugawa Y; Hanajima R
    J Neurophysiol; 2012 Aug; 108(4):1130-7. PubMed ID: 22623481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Afferent inhibition and cortical silent periods in shoulder primary motor cortex and effect of a suprascapular nerve block in people experiencing chronic shoulder pain.
    Bradnam L; Shanahan EM; Hendy K; Reed A; Skipworth T; Visser A; Lennon S
    Clin Neurophysiol; 2016 Jan; 127(1):769-778. PubMed ID: 25900020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-latency afferent inhibition is reduced in people with multiple sclerosis during fatiguing muscle contractions.
    Brotherton EJ; Sabapathy S; Dempsey LM; Kavanagh JJ
    Eur J Neurosci; 2024 Apr; 59(8):2087-2101. PubMed ID: 38234172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition.
    Di Lazzaro V; Pilato F; Dileone M; Tonali PA; Ziemann U
    J Physiol; 2005 Nov; 569(Pt 1):315-23. PubMed ID: 16141274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Centre-surround organization of fast sensorimotor integration in human motor hand area.
    Dubbioso R; Raffin E; Karabanov A; Thielscher A; Siebner HR
    Neuroimage; 2017 Sep; 158():37-47. PubMed ID: 28669907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans.
    Mercante B; Pilurzi G; Ginatempo F; Manca A; Follesa P; Tolu E; Deriu F
    Exp Brain Res; 2015 Nov; 233(11):3301-11. PubMed ID: 26259748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-latency afferent inhibition and somato-sensory evoked potentials during the migraine cycle: surrogate markers of a cycling cholinergic thalamo-cortical drive?
    Coppola G; Di Lenola D; Abagnale C; Ferrandes F; Sebastianelli G; Casillo F; Di Lorenzo C; Serrao M; Evangelista M; Schoenen J; Pierelli F
    J Headache Pain; 2020 Apr; 21(1):34. PubMed ID: 32299338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short and long latency afferent inhibition in Parkinson's disease.
    Sailer A; Molnar GF; Paradiso G; Gunraj CA; Lang AE; Chen R
    Brain; 2003 Aug; 126(Pt 8):1883-94. PubMed ID: 12805105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of sensorimotor circuits during retrieval of negative Autobiographical Memories: Exploring the impact of personality dimensions.
    Mineo L; Concerto C; Patel D; Mayorga T; Chusid E; Infortuna C; Aguglia E; Sarraf Y; Battaglia F
    Neuropsychologia; 2018 Feb; 110():190-196. PubMed ID: 28404231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS.
    Fischer M; Orth M
    Brain Stimul; 2011 Oct; 4(4):202-9. PubMed ID: 22032735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.