These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 25833165)
1. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Torres-Rendon JG; Femmer T; De Laporte L; Tigges T; Rahimi K; Gremse F; Zafarnia S; Lederle W; Ifuku S; Wessling M; Hardy JG; Walther A Adv Mater; 2015 May; 27(19):2989-95. PubMed ID: 25833165 [TBL] [Abstract][Full Text] [Related]
2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
3. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. Zander NE; Dong H; Steele J; Grant JT ACS Appl Mater Interfaces; 2014; 6(21):18502-10. PubMed ID: 25295848 [TBL] [Abstract][Full Text] [Related]
4. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827 [TBL] [Abstract][Full Text] [Related]
5. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
6. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214 [TBL] [Abstract][Full Text] [Related]
7. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
8. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. Liu L; Yang B; Wang LQ; Huang JP; Chen WY; Ban Q; Zhang Y; You R; Yin L; Guan YQ J Mater Chem B; 2020 Jan; 8(3):558-567. PubMed ID: 31854433 [TBL] [Abstract][Full Text] [Related]
10. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
11. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. Gupta D; Singh AK; Dravid A; Bellare J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of hydrogel-based biomimetic microenvironments. Luo Y; Wei X; Huang P J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Raic A; Rödling L; Kalbacher H; Lee-Thedieck C Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Kumar PT; Srinivasan S; Lakshmanan VK; Tamura H; Nair SV; Jayakumar R Int J Biol Macromol; 2011 Jul; 49(1):20-31. PubMed ID: 21435350 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Kim HD; Amirthalingam S; Kim SL; Lee SS; Rangasamy J; Hwang NS Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 29171714 [TBL] [Abstract][Full Text] [Related]
17. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007 [TBL] [Abstract][Full Text] [Related]
18. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. Tamo AK J Mater Chem B; 2024 Aug; 12(32):7692-7759. PubMed ID: 38805188 [TBL] [Abstract][Full Text] [Related]
19. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Liu J; Cheng F; Grénman H; Spoljaric S; Seppälä J; E Eriksson J; Willför S; Xu C Carbohydr Polym; 2016 Sep; 148():259-71. PubMed ID: 27185139 [TBL] [Abstract][Full Text] [Related]