BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25833294)

  • 1. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors.
    Beuwer MA; Prins MW; Zijlstra P
    Nano Lett; 2015 May; 15(5):3507-11. PubMed ID: 25833294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface enhanced fluorescence immuno-biosensor based on gold nanorods.
    Peixoto LPF; Santos JFL; Andrade GFS
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121753. PubMed ID: 36058169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors.
    Focsan M; Campu A; Craciun AM; Potara M; Leordean C; Maniu D; Astilean S
    Biosens Bioelectron; 2016 Dec; 86():728-735. PubMed ID: 27476053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational selection of gold nanorod geometry for label-free plasmonic biosensors.
    Nusz GJ; Curry AC; Marinakos SM; Wax A; Chilkoti A
    ACS Nano; 2009 Apr; 3(4):795-806. PubMed ID: 19296619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.
    Chamanzar M; Xia Z; Yegnanarayanan S; Adibi A
    Opt Express; 2013 Dec; 21(26):32086-98. PubMed ID: 24514803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis.
    Sriram M; Markhali BP; Nicovich PR; Bennett DT; Reece PJ; Brynn Hibbert D; Tilley RD; Gaus K; Vivekchand SRC; Gooding JJ
    Biosens Bioelectron; 2018 Oct; 117():530-536. PubMed ID: 29982124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional sensitivity characterization of plasmonic nanorods for refractometric biosensors.
    Leitgeb V; Trügler A; Köstler S; Krug MK; Hohenester U; Hohenau A; Leitner A; Krenn JR
    Nanoscale; 2016 Feb; 8(5):2974-81. PubMed ID: 26781940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities.
    Ahijado-Guzmán R; Prasad J; Rosman C; Henkel A; Tome L; Schneider D; Rivas G; Sönnichsen C
    Nano Lett; 2014 Oct; 14(10):5528-32. PubMed ID: 25153997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma.
    Wang X; Li Y; Wang H; Fu Q; Peng J; Wang Y; Du J; Zhou Y; Zhan L
    Biosens Bioelectron; 2010 Oct; 26(2):404-10. PubMed ID: 20729056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform.
    Baaske MD; Foreman MR; Vollmer F
    Nat Nanotechnol; 2014 Nov; 9(11):933-9. PubMed ID: 25173831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection.
    Zhang H; Song D; Gao S; Zhang H; Zhang J; Sun Y
    Talanta; 2013 Oct; 115():857-62. PubMed ID: 24054674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.