These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25833294)

  • 81. Gold-silver alloy semi-nanoshell arrays for label-free plasmonic biosensors.
    Russo V; Michieli N; Cesca T; Scian C; Silvestri D; Morpurgo M; Mattei G
    Nanoscale; 2017 Jul; 9(28):10117-10125. PubMed ID: 28695942
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enzyme-coupled nanoplasmonic biosensing of cancer markers in human serum.
    Jo NR; Lee KJ; Shin YB
    Biosens Bioelectron; 2016 Jul; 81():324-333. PubMed ID: 26985585
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Plasmonic biosensors.
    Hill RT
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(2):152-68. PubMed ID: 25377594
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Ultrasensitive MicroRNA Assay via Surface Plasmon Resonance Responses of Au@Ag Nanorods Etching.
    Gu Y; Song J; Li MX; Zhang TT; Zhao W; Xu JJ; Liu M; Chen HY
    Anal Chem; 2017 Oct; 89(19):10585-10591. PubMed ID: 28872300
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol.
    Kreuzer MP; Quidant R; Salvador JP; Marco MP; Badenes G
    Anal Bioanal Chem; 2008 Jul; 391(5):1813-20. PubMed ID: 18373230
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fourier Transform Surface Plasmon Resonance (FTSPR) with Gyromagnetic Plasmonic Nanorods.
    Jung I; Yoo H; Jang HJ; Cho S; Lee K; Hong S; Park S
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1841-1845. PubMed ID: 29266670
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Measurement of antigen-antibody interactions with biosensors.
    Van Regenmortel MH; Altschuh D; Chatellier J; Christensen L; Rauffer-Bruyère N; Richalet-Secordel P; Witz J; Zeder-Lutz G
    J Mol Recognit; 1998; 11(1-6):163-7. PubMed ID: 10076831
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Assembly of Gold Nanorods on HSA Amyloid Fibrils to Develop a Conductive Nanoscaffold for Potential Biomedical and Biosensing Applications.
    Taheri RA; Akhtari Y; Tohidi Moghadam T; Ranjbar B
    Sci Rep; 2018 Jun; 8(1):9333. PubMed ID: 29921839
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Multiplexed plasmon sensor for rapid label-free analyte detection.
    Rosman C; Prasad J; Neiser A; Henkel A; Edgar J; Sönnichsen C
    Nano Lett; 2013 Jul; 13(7):3243-7. PubMed ID: 23789876
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Single-crystal caged gold nanorods with tunable broadband plasmon resonances.
    Xiong W; Sikdar D; Walsh M; Si KJ; Tang Y; Chen Y; Mazid R; Weyland M; Rukhlenko ID; Etheridge J; Premaratne M; Li X; Cheng W
    Chem Commun (Camb); 2013 Oct; 49(83):9630-2. PubMed ID: 24022293
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods.
    Juvé V; Cardinal MF; Lombardi A; Crut A; Maioli P; Pérez-Juste J; Liz-Marzán LM; Del Fatti N; Vallée F
    Nano Lett; 2013 May; 13(5):2234-40. PubMed ID: 23611370
    [TBL] [Abstract][Full Text] [Related]  

  • 93. High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor.
    Jung JW; Jung SH; Kim HS; Yuk JS; Park JB; Kim YM; Han JA; Kim PH; Ha KS
    Proteomics; 2006 Feb; 6(4):1110-20. PubMed ID: 16402361
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors.
    Guo L; Zhou X; Kim DH
    Biosens Bioelectron; 2011 Jan; 26(5):2246-51. PubMed ID: 21035320
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens.
    Parab HJ; Jung C; Lee JH; Park HG
    Biosens Bioelectron; 2010 Oct; 26(2):667-73. PubMed ID: 20675117
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bioplasmonic calligraphy for multiplexed label-free biodetection.
    Tian L; Tadepalli S; Park SH; Liu KK; Morrissey JJ; Kharasch ED; Naik RR; Singamaneni S
    Biosens Bioelectron; 2014 Sep; 59():208-15. PubMed ID: 24727607
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Theoretical simulation of nonlinear regulation of wall thickness dependent longitudinal surface plasmon in pentagonal gold nanotubes.
    Liu YL; Zhu J; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121037. PubMed ID: 35189490
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Visualizing Diffusional Dynamics of Gold Nanorods on Cell Membrane using Single Nanoparticle Darkfield Microscopy.
    Ge F; Xue J; He Y
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33749684
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biosensors: One molecule at a time.
    Käll M
    Nat Nanotechnol; 2012 Jun; 7(6):347-9. PubMed ID: 22669088
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.