These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25833442)

  • 1. Flow networks: a characterization of geophysical fluid transport.
    Ser-Giacomi E; Rossi V; López C; Hernández-García E
    Chaos; 2015 Mar; 25(3):036404. PubMed ID: 25833442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies.
    Santitissadeekorn N; Bollt EM
    Chaos; 2007 Jun; 17(2):023126. PubMed ID: 17614680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.
    Lindner M; Donner RV
    Chaos; 2017 Mar; 27(3):035806. PubMed ID: 28364756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network and geometric characterization of three-dimensional fluid transport between two layers.
    de la Fuente R; Drótos G; Hernández-García E; López C
    Phys Rev E; 2021 Dec; 104(6-2):065111. PubMed ID: 35030886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering coefficient and periodic orbits in flow networks.
    Rodríguez-Méndez V; Ser-Giacomi E; Hernández-García E
    Chaos; 2017 Mar; 27(3):035803. PubMed ID: 28364759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
    Gao Z; Jin N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066303. PubMed ID: 19658590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems.
    McCullough M; Small M; Stemler T; Iu HH
    Chaos; 2015 May; 25(5):053101. PubMed ID: 26026313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures.
    Fazanaro FI; Soriano DC; Suyama R; Attux R; Madrid MK; de Oliveira JR
    Chaos; 2013 Jun; 23(2):023105. PubMed ID: 23822470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Lagrangian coherent structures to analyze fluid mixing by cilia.
    Lukens S; Yang X; Fauci L
    Chaos; 2010 Mar; 20(1):017511. PubMed ID: 20370301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
    Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR
    J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying finite-time coherent sets from limited quantities of Lagrangian data.
    Williams MO; Rypina II; Rowley CW
    Chaos; 2015 Aug; 25(8):087408. PubMed ID: 26328579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing and transport in urban areas.
    Belcher SE
    Philos Trans A Math Phys Eng Sci; 2005 Dec; 363(1837):2947-68. PubMed ID: 16286299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-flow mixing and transfer operators.
    Klünker A; Padberg-Gehle K; Thiffeault JL
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210028. PubMed ID: 35465711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic regions in flows through three-dimensional pore structures.
    Hyman JD; Winter CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063014. PubMed ID: 24483564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifractal structure of chaotically advected chemical fields.
    Neufeld Z; Lopez C; Hernandez-Garcia E; Tel T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3857-66. PubMed ID: 11088165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized topology of recurrence-based complex networks.
    Yang H; Liu G
    Chaos; 2013 Dec; 23(4):043116. PubMed ID: 24387555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal chaos versus spatial mixing in reaction-advection-diffusion systems.
    Straube AV; Abel M; Pikovsky A
    Phys Rev Lett; 2004 Oct; 93(17):174501. PubMed ID: 15525082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks.
    Sherman T; Hyman JD; Bolster D; Makedonska N; Srinivasan G
    Phys Rev E; 2019 Jan; 99(1-1):013110. PubMed ID: 30780262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perturbation-theoretic approach to Lagrangian flow networks.
    Fujiwara N; Kirchen K; Donges JF; Donner RV
    Chaos; 2017 Mar; 27(3):035813. PubMed ID: 28364772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.