BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25833594)

  • 1. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line.
    Míguez JM; Conde MM; Torré JP; Blas FJ; Piñeiro MM; Vega C
    J Chem Phys; 2015 Mar; 142(12):124505. PubMed ID: 25833594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.
    Costandy J; Michalis VK; Tsimpanogiannis IN; Stubos AK; Economou IG
    J Chem Phys; 2015 Sep; 143(9):094506. PubMed ID: 26342376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.
    Michalis VK; Tsimpanogiannis IN; Stubos AK; Economou IG
    Phys Chem Chem Phys; 2016 Sep; 18(34):23538-48. PubMed ID: 27507133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance of OPC water model in prediction of the phase equilibria of methane hydrate.
    Hao X; Li C; Liu C; Meng Q; Sun J
    J Chem Phys; 2022 Jul; 157(1):014504. PubMed ID: 35803825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations.
    Ning FL; Glavatskiy K; Ji Z; Kjelstrup S; H Vlugt TJ
    Phys Chem Chem Phys; 2015 Jan; 17(4):2869-83. PubMed ID: 25501882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology.
    Michalis VK; Costandy J; Tsimpanogiannis IN; Stubos AK; Economou IG
    J Chem Phys; 2015 Jan; 142(4):044501. PubMed ID: 25637989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation of the Three-Phase Equilibrium Line of CO
    Hao X; Li C; Meng Q; Sun J; Huang L; Bu Q; Li C
    ACS Omega; 2023 Oct; 8(42):39847-39854. PubMed ID: 37901483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of high-pressure phase equilibria of CO2-H2O mixtures.
    Liu Y; Panagiotopoulos AZ; Debenedetti PG
    J Phys Chem B; 2011 May; 115(20):6629-35. PubMed ID: 21528884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubility of carbon dioxide in water: Some useful results for hydrate nucleation.
    Algaba J; Zerón IM; Míguez JM; Grabowska J; Blazquez S; Sanz E; Vega C; Blas FJ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the univariant two-phase coexistence line of the tetrahydrofuran hydrate from computer simulation.
    Algaba J; Romero-Guzmán C; Torrejón MJ; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations.
    Waage MH; Vlugt TJH; Kjelstrup S
    J Phys Chem B; 2017 Aug; 121(30):7336-7350. PubMed ID: 28682631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L; Thomsen K; von Solms N; Wierzchowski S; Walsh MR; Koh CA; Sloan ED; Wu DT; Sum AK
    J Phys Chem B; 2010 May; 114(17):5775-82. PubMed ID: 20392117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2.
    Alavi S; Ohmura R; Ripmeester JA
    J Chem Phys; 2011 Feb; 134(5):054702. PubMed ID: 21303147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics study of model SI clathrate hydrates: the effect of guest size and guest-water interaction on decomposition kinetics.
    Das S; Baghel VS; Roy S; Kumar R
    Phys Chem Chem Phys; 2015 Apr; 17(14):9509-18. PubMed ID: 25767053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence.
    Luis DP; García-González A; Saint-Martin H
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-phase equilibria of hydrates from computer simulation. III. Effect of dispersive interactions in the methane and carbon dioxide hydrates.
    Algaba J; Blazquez S; Míguez JM; Conde MM; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38686999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase equilibrium measurements and crystallographic analyses on structure-H type gas hydrate formed from the CH4-CO2-neohexane-water system.
    Uchida T; Ohmura R; Ikeda IY; Nagao J; Takeya S; Hori A
    J Phys Chem B; 2006 Mar; 110(10):4583-8. PubMed ID: 16526688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase equilibria molecular simulations of hydrogen hydrates via the direct phase coexistence approach.
    Michalis VK; Economou IG; Stubos AK; Tsimpanogiannis IN
    J Chem Phys; 2022 Oct; 157(15):154501. PubMed ID: 36272800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the carbon dioxide hydrate-water interfacial energy.
    Algaba J; Acuña E; Míguez JM; Mendiboure B; Zerón IM; Blas FJ
    J Colloid Interface Sci; 2022 Oct; 623():354-367. PubMed ID: 35594594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.