These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25833594)

  • 21. Three-phase equilibria of hydrates from computer simulation. II. Finite-size effects in the carbon dioxide hydrate.
    Algaba J; Blazquez S; Feria E; Míguez JM; Conde MM; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38687000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation.
    Míguez JM; Piñeiro MM; Blas FJ
    J Chem Phys; 2013 Jan; 138(3):034707. PubMed ID: 23343293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields.
    Trinh TT; Vlugt TJ; Kjelstrup S
    J Chem Phys; 2014 Oct; 141(13):134504. PubMed ID: 25296818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of clathrate hydrates containing carbon dioxide and ethanol.
    Makiya T; Murakami T; Takeya S; Sum AK; Alavi S; Ohmura R
    Phys Chem Chem Phys; 2010 Sep; 12(33):9927-32. PubMed ID: 20532336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system.
    Manakov AY; Dyadin YA; Ogienko AG; Kurnosov AV; Aladko EY; Larionov EG; Zhurko FV; Voronin VI; Berger IF; Goryainov SV; Lihacheva AY; Ancharov AI
    J Phys Chem B; 2009 May; 113(20):7257-62. PubMed ID: 19438280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase stability of the ice XVII-based CO
    Michl J; Sega M; Dellago C
    J Chem Phys; 2019 Sep; 151(10):104502. PubMed ID: 31521081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system.
    Svandal A; Kuznetsova T; Kvamme B
    Phys Chem Chem Phys; 2006 Apr; 8(14):1707-13. PubMed ID: 16633655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of the THF hydrate-water interfacial free energy from computer simulation.
    Torrejón MJ; Romero-Guzmán C; Piñeiro MM; Blas FJ; Algaba J
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39115168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.
    Jin D; Coasne B
    Langmuir; 2017 Oct; 33(42):11217-11230. PubMed ID: 28793774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Measurement of the Four-Phase Equilibrium Coexistence Vapor-Aqueous Solution-Ice-Gas Hydrate in Water-Carbon Dioxide System.
    Semenov A; Mendgaziev R; Stoporev A; Istomin V; Tulegenov T; Yarakhmedov M; Novikov A; Vinokurov V
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate.
    Docherty H; Galindo A; Vega C; Sanz E
    J Chem Phys; 2006 Aug; 125(7):074510. PubMed ID: 16942354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO
    Holzammer C; Schicks JM; Will S; Braeuer AS
    J Phys Chem B; 2017 Sep; 121(35):8330-8337. PubMed ID: 28817275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melting and superheating of sI methane hydrate: molecular dynamics study.
    Smirnov GS; Stegailov VV
    J Chem Phys; 2012 Jan; 136(4):044523. PubMed ID: 22299907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions.
    Moudrakovski IL; Udachin KA; Alavi S; Ratcliffe CI; Ripmeester JA
    J Chem Phys; 2015 Feb; 142(7):074705. PubMed ID: 25702022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.
    Yu KB; Yazaydin AO
    J Phys Chem C Nanomater Interfaces; 2020 May; 124(20):11015-11022. PubMed ID: 32582402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The coexistence temperature of hydrogen clathrates: A molecular dynamics study.
    Luis DP; Romero-Ramirez IE; González-Calderón A; López-Lemus J
    J Chem Phys; 2018 Mar; 148(11):114503. PubMed ID: 29566510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates.
    Lee HH; Ahn SH; Nam BU; Kim BS; Lee GW; Moon D; Shin HJ; Han KW; Yoon JH
    Environ Sci Technol; 2012 Apr; 46(7):4184-90. PubMed ID: 22380606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties.
    Desgranges C; Delhommelle J
    J Chem Phys; 2014 Mar; 140(10):104109. PubMed ID: 24628154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.