These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25833609)

  • 1. Dependence of FRET efficiency on distance in single donor-acceptor pairs.
    Osad'ko IS
    J Chem Phys; 2015 Mar; 142(12):125102. PubMed ID: 25833609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.
    Osad'ko IS; Shchukina AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a robust model system of FRET using base surrogates tethering fluorophores for strict control of their position and orientation within DNA duplex.
    Kato T; Kashida H; Kishida H; Yada H; Okamoto H; Asanuma H
    J Am Chem Soc; 2013 Jan; 135(2):741-50. PubMed ID: 23240980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using structure-function constraints in FRET studies of large macromolecular complexes.
    Bujalowski WM; Jezewska MJ
    Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler.
    Moroz P; Jin Z; Sugiyama Y; Lara D; Razgoniaeva N; Yang M; Kholmicheva N; Khon D; Mattoussi H; Zamkov M
    ACS Nano; 2018 Jun; 12(6):5657-5665. PubMed ID: 29883087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores.
    Hevekerl H; Spielmann T; Chmyrov A; Widengren J
    J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
    Yoo J; Louis JM; Gopich IV; Chung HS
    J Phys Chem B; 2018 Dec; 122(49):11702-11720. PubMed ID: 30230835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes in complex macromolecules studied by single donor-acceptor pair fluorescence.
    Osad'ko IS
    Phys Chem Chem Phys; 2013 Oct; 15(38):16190-7. PubMed ID: 23996051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing Förster resonance energy transfer with fluctuation algorithms.
    Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA
    Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors.
    Deng C; Li J; Ma W
    Talanta; 2010 Jul; 82(2):771-4. PubMed ID: 20602968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of conventional FRET and light harvesting properties of Rh-110/Rh-6G and Rh-19/Rh-B organic dye pairs impregnated in sol-gel glasses.
    Mahato KD; Kumar U
    Methods Appl Fluoresc; 2023 May; 11(3):. PubMed ID: 37094579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step FRET as a structural tool.
    Watrob HM; Pan CP; Barkley MD
    J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.