These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 25833689)
1. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction. Cai K; Liu J; Zhang H; Huang Z; Lu Z; Foda MF; Li T; Han H Chemistry; 2015 May; 21(20):7556-61. PubMed ID: 25833689 [TBL] [Abstract][Full Text] [Related]
3. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
4. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
5. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chen L; Kuai L; Yu X; Li W; Geng B Chemistry; 2013 Aug; 19(35):11753-8. PubMed ID: 23852858 [TBL] [Abstract][Full Text] [Related]
6. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332 [TBL] [Abstract][Full Text] [Related]
7. PPyNT-Im-PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. Peng Y; Liu C; Pan C; Qiu L; Wang S; Yan F ACS Appl Mater Interfaces; 2013 Apr; 5(7):2752-60. PubMed ID: 23469755 [TBL] [Abstract][Full Text] [Related]
8. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
9. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction. Li X; Liu J; He W; Huang Q; Yang H J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983 [TBL] [Abstract][Full Text] [Related]
10. Novel Au Catalysis Strategy for the Synthesis of Au@Pt Core-Shell Nanoelectrocatalyst with Self-Controlled Quasi-Monolayer Pt Skin. Zhang Y; Li X; Li K; Xue B; Zhang C; Du C; Wu Z; Chen W ACS Appl Mater Interfaces; 2017 Sep; 9(38):32688-32697. PubMed ID: 28884575 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896 [TBL] [Abstract][Full Text] [Related]
12. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction. Hsu C; Huang C; Hao Y; Liu F Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948 [TBL] [Abstract][Full Text] [Related]
14. Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation. Gu X; Cong X; Ding Y Chemphyschem; 2010 Mar; 11(4):841-6. PubMed ID: 20166117 [TBL] [Abstract][Full Text] [Related]
15. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition. Dai Y; Chen S ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894 [TBL] [Abstract][Full Text] [Related]
16. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Porter NS; Wu H; Quan Z; Fang J Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578 [TBL] [Abstract][Full Text] [Related]
17. Electrocatalytic activity of PtAu/C catalysts for glycerol oxidation. Jin C; Sun C; Dong R; Chen Z J Nanosci Nanotechnol; 2012 Jan; 12(1):324-9. PubMed ID: 22523982 [TBL] [Abstract][Full Text] [Related]
18. Fe(II)-Assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR. Cao Y; Xiahou Y; Xing L; Zhang X; Li H; Wu C; Xia H Nanoscale; 2020 Oct; 12(39):20456-20466. PubMed ID: 33026009 [TBL] [Abstract][Full Text] [Related]
19. Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Su S; Zhang C; Yuwen L; Liu X; Wang L; Fan C; Wang L Nanoscale; 2016 Jan; 8(1):602-8. PubMed ID: 26645896 [TBL] [Abstract][Full Text] [Related]
20. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Tan Y; Fan J; Chen G; Zheng N; Xie Q Chem Commun (Camb); 2011 Nov; 47(42):11624-6. PubMed ID: 21960041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]