These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25833718)

  • 1. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.
    Bahl S; Shreyas P; Trishul MA; Suwas S; Chatterjee K
    Nanoscale; 2015 May; 7(17):7704-16. PubMed ID: 25833718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface nanocrystallization enhances the biomedical performance of additively manufactured stainless steel.
    Ghosh S; Indrakumar S; Ghosh S; Gopal V; Nilawar S; Manivasagam G; Kesave JS; Suwas S; Chatterjee K
    J Mater Chem B; 2023 Oct; 11(40):9697-9711. PubMed ID: 37789772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.
    Proust G; Retraint D; Chemkhi M; Roos A; Demangel C
    Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications.
    Shih CC; Shih CM; Su YY; Lin SJ
    J Biomed Mater Res A; 2003 Dec; 67(4):1320-8. PubMed ID: 14624519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility.
    Peng C; Izawa T; Zhu L; Kuroda K; Okido M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells.
    Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P
    Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.
    Nie FL; Wang SG; Wang YB; Wei SC; Zheng YF
    Dent Mater; 2011 Jul; 27(7):677-83. PubMed ID: 21514955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.
    Jindal S; Bansal R; Singh BP; Pandey R; Narayanan S; Wani MR; Singh V
    J Oral Implantol; 2014 Jul; 40 Spec No():347-55. PubMed ID: 25020216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials.
    Fonseca-García A; Pérez-Alvarez J; Barrera CC; Medina JC; Almaguer-Flores A; Sánchez RB; Rodil SE
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():119-129. PubMed ID: 27207045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of stainless steel orthopedic implants by sol-gel ZrTiO4 and ZrTiO4-PMMA coatings.
    Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Vashaee D; Tayebi L
    J Biomed Nanotechnol; 2013 Aug; 9(8):1327-35. PubMed ID: 23926798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion and surface modification on biocompatible metals: A review.
    Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications.
    Thangaraj B; Nellaiappan SN; Kulandaivelu R; Lee MH; Nishimura T
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17731-47. PubMed ID: 26196218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser surface modification of 316L stainless steel.
    Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material.
    Bekmurzayeva A; Duncanson WJ; Azevedo HS; Kanayeva D
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():1073-1089. PubMed ID: 30274039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications.
    Alias R; Mahmoodian R; Genasan K; Vellasamy KM; Hamdi Abd Shukor M; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110304. PubMed ID: 31761210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment.
    Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.