These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25833822)

  • 1. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.
    Ducrot V; Ashauer R; Bednarska AJ; Hinarejos S; Thorbek P; Weyman G
    Integr Environ Assess Manag; 2016 Jan; 12(1):32-45. PubMed ID: 25833822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly time-variable exposure to chemicals--toward an assessment strategy.
    Ashauer R; Brown CD
    Integr Environ Assess Manag; 2013 Jul; 9(3):e27-33. PubMed ID: 23564608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products.
    Hommen U; Schmitt W; Heine S; Brock TC; Duquesne S; Manson P; Meregalli G; Ochoa-Acuña H; van Vliet P; Arts G
    Integr Environ Assess Manag; 2016 Jan; 12(1):82-95. PubMed ID: 26420056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicokinetic-Toxicodynamic Modeling of the Effects of Pesticides on Growth of
    Martin T; Thompson H; Thorbek P; Ashauer R
    Chem Res Toxicol; 2019 Nov; 32(11):2281-2294. PubMed ID: 31674768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A risk assessment example for soil invertebrates using spatially explicit agent-based models.
    Reed M; Alvarez T; Chelinho S; Forbes V; Johnston A; Meli M; Voss F; Pastorok R
    Integr Environ Assess Manag; 2016 Jan; 12(1):58-66. PubMed ID: 26411378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of General Unified Threshold Models of Survival Models for Regulatory Aquatic Pesticide Risk Assessment Illustrated with an Example for the Insecticide Chlorpyrifos.
    Brock T; Arena M; Cedergreen N; Charles S; Duquesne S; Ippolito A; Klein M; Reed M; Teodorovic I; van den Brink PJ; Focks A
    Integr Environ Assess Manag; 2021 Jan; 17(1):243-258. PubMed ID: 32786054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK.
    Hommen U; Forbes V; Grimm V; Preuss TG; Thorbek P; Ducrot V
    Integr Environ Assess Manag; 2016 Jan; 12(1):21-31. PubMed ID: 26437629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An example of population-level risk assessments for small mammals using individual-based population models.
    Schmitt W; Auteri D; Bastiansen F; Ebeling M; Liu C; Luttik R; Mastitsky S; Nacci D; Topping C; Wang M
    Integr Environ Assess Manag; 2016 Jan; 12(1):46-57. PubMed ID: 25891765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2022 Nov; 312():120041. PubMed ID: 36030954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population-level effects and recovery of aquatic invertebrates after multiple applications of an insecticide.
    Dohmen GP; Preuss TG; Hamer M; Galic N; Strauss T; van den Brink PJ; De Laender F; Bopp S
    Integr Environ Assess Manag; 2016 Jan; 12(1):67-81. PubMed ID: 26119989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Toxicokinetic-Toxicodynamic Modeling Workflow Assessing the Quality of Input Mortality Data.
    Bauer B; Singer A; Gao Z; Jakoby O; Witt J; Preuss T; Gergs A
    Environ Toxicol Chem; 2024 Jan; 43(1):197-210. PubMed ID: 37818873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish Species Sensitivity Ranking Depends on Pesticide Exposure Profiles.
    Nickisch Born Gericke D; Rall BC; Singer A; Ashauer R
    Environ Toxicol Chem; 2022 Jul; 41(7):1732-1741. PubMed ID: 35452530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicokinetic and toxicodynamic considerations when deriving health-based exposure limits for pharmaceuticals.
    Reichard JF; Maier MA; Naumann BD; Pecquet AM; Pfister T; Sandhu R; Sargent EV; Streeter AJ; Weideman PA
    Regul Toxicol Pharmacol; 2016 Aug; 79 Suppl 1():S67-78. PubMed ID: 27224509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides.
    Galic N; Ashauer R; Baveco H; Nyman AM; Barsi A; Thorbek P; Bruns E; Van den Brink PJ
    Environ Toxicol Chem; 2014 Jul; 33(7):1476-88. PubMed ID: 24307654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model.
    Gao Y; Xie Z; Feng M; Feng J; Zhu L
    Ecotoxicol Environ Saf; 2020 Oct; 203():111043. PubMed ID: 32888597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting copper toxicity in zebrafish larvae under complex water chemistry conditions by using a toxicokinetic-toxicodynamic model.
    Gao Y; Feng J; Zhu J; Zhu L
    J Hazard Mater; 2020 Dec; 400():123205. PubMed ID: 32585514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides.
    Rico A; Van den Brink PJ; Gylstra R; Focks A; Brock TC
    Integr Environ Assess Manag; 2016 Jul; 12(3):510-21. PubMed ID: 26437690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish.
    Gao Y; Kang L; Zhang Y; Feng J; Zhu L
    Chemosphere; 2019 Apr; 220():774-782. PubMed ID: 30611076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body size-dependent toxicokinetics and toxicodynamics could explain intra- and interspecies variability in sensitivity.
    Gergs A; Kulkarni D; Preuss TG
    Environ Pollut; 2015 Nov; 206():449-55. PubMed ID: 26275729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.