These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25833997)

  • 1. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.
    Secoli R; Robinson M; Brugnoli M; Rodriguez y Baena F
    Proc Inst Mech Eng H; 2015 Mar; 229(3):215-24. PubMed ID: 25833997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A variable torque motor compatible with magnetic resonance imaging.
    Roeck WW; Ha SH; Farmaka S; Nalcioglu O
    Rev Sci Instrum; 2009 Apr; 80(4):046108. PubMed ID: 19405704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Speed Pneumatic Stepper Motor for MRI Applications.
    Boland BL; Xu S; Wood B; Tse ZTH
    Ann Biomed Eng; 2019 Mar; 47(3):826-835. PubMed ID: 30552529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance.
    Christoforou EG; Seimenis I; Andreou E; Eracleous E; Tsekos NV
    Int J Med Robot; 2014 Mar; 10(1):22-34. PubMed ID: 23625884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement.
    Muntener M; Patriciu A; Petrisor D; Mazilu D; Bagga H; Kavoussi L; Cleary K; Stoianovici D
    Urology; 2006 Dec; 68(6):1313-7. PubMed ID: 17169653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convertible pneumatic actuator for magnetic resonance elastography of the brain.
    Latta P; Gruwel ML; Debergue P; Matwiy B; Sboto-Frankenstein UN; Tomanek B
    Magn Reson Imaging; 2011 Jan; 29(1):147-52. PubMed ID: 20833495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.
    Tsekos NV; Khanicheh A; Christoforou E; Mavroidis C
    Annu Rev Biomed Eng; 2007; 9():351-87. PubMed ID: 17439358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative neurophysiological monitoring in an open low-field magnetic resonance imaging system: clinical experience and technical considerations.
    Szelényi A; Gasser T; Seifert V
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):268-75; discussion 275-6. PubMed ID: 18981832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards MRI guided surgical manipulator.
    Chinzei K; Miller K
    Med Sci Monit; 2001; 7(1):153-63. PubMed ID: 11208513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "MRI Stealth" robot for prostate interventions.
    Stoianovici D; Song D; Petrisor D; Ursu D; Mazilu D; Muntener M; Schar M; Patriciu A
    Minim Invasive Ther Allied Technol; 2007; 16(4):241-8. PubMed ID: 17763098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention.
    Chen Y; Kwok KW; Tse ZT
    Ann Biomed Eng; 2014 Sep; 42(9):1823-33. PubMed ID: 24957635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches to creating and controlling motion in MRI.
    Fischer GS; Cole G; Su H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6687-90. PubMed ID: 22255873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.
    Kennedy M; Lee Y; Nagy Z
    Magn Reson Med; 2018 Aug; 80(2):833-839. PubMed ID: 29285786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing ferromagnetic artefact with metallic lumbar total disc arthroplasty devices at adjacent segments: technical note.
    Marshman LA; Strong G; Trewhella M; Kasis A; Friesem T
    Spine (Phila Pa 1976); 2010 Jan; 35(2):252-6. PubMed ID: 20081522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The case for MR-compatible robotics: a review of the state of the art.
    Elhawary H; Tse ZT; Hamed A; Rea M; Davies BL; Lamperth MU
    Int J Med Robot; 2008 Jun; 4(2):105-13. PubMed ID: 18481822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR-Conditional Actuations: A Review.
    Xiao Q; Monfaredi R; Musa M; Cleary K; Chen Y
    Ann Biomed Eng; 2020 Dec; 48(12):2707-2733. PubMed ID: 32856179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI compatibility evaluation of a piezoelectric actuator system for a neural interventional robot.
    Wang Y; Cole GA; Su H; Pilitsis JG; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6072-5. PubMed ID: 19964890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a novel piezoelectric motor at 4.7 T: applications and initial tests.
    Turowski SG; Seshadri M; Loecher M; Podniesinski E; Spernyak JA; Mazurchuk RV
    Magn Reson Imaging; 2008 Apr; 26(3):426-32. PubMed ID: 17826943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions.
    Su H; Kwok KW; Cleary K; Iordachita I; Cavusoglu MC; Desai JP; Fischer GS
    Proc IEEE Inst Electr Electron Eng; 2022 Jul; 110(7):968-992. PubMed ID: 35756185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prototype phantoms for characterization of ultralow field magnetic resonance imaging.
    Boss MA; Mates JA; Busch SE; SanGiorgio P; Russek SE; Buckenmaier K; Irwin KD; Cho HM; Hilton GC; Clarke J
    Magn Reson Med; 2014 Dec; 72(6):1793-800. PubMed ID: 24281979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.