These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 25834062)
1. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG. Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM J Neurosci; 2015 Apr; 35(13):5385-96. PubMed ID: 25834062 [TBL] [Abstract][Full Text] [Related]
2. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536 [TBL] [Abstract][Full Text] [Related]
3. Neuronal avalanches in the resting MEG of the human brain. Shriki O; Alstott J; Carver F; Holroyd T; Henson RN; Smith ML; Coppola R; Bullmore E; Plenz D J Neurosci; 2013 Apr; 33(16):7079-90. PubMed ID: 23595765 [TBL] [Abstract][Full Text] [Related]
4. Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG. Dürschmid S; Reichert C; Walter N; Hinrichs H; Heinze HJ; Ohl FW; Tononi G; Deliano M PLoS One; 2020; 15(6):e0233589. PubMed ID: 32525940 [TBL] [Abstract][Full Text] [Related]
5. EEG, temporal correlations, and avalanches. Benayoun M; Kohrman M; Cowan J; van Drongelen W J Clin Neurophysiol; 2010 Dec; 27(6):458-64. PubMed ID: 21076326 [TBL] [Abstract][Full Text] [Related]
6. Statistical analyses support power law distributions found in neuronal avalanches. Klaus A; Yu S; Plenz D PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544 [TBL] [Abstract][Full Text] [Related]
7. Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results. Dalla Porta L; Copelli M PLoS Comput Biol; 2019 Apr; 15(4):e1006924. PubMed ID: 30951525 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis. Dubarry AS; Badier JM; Trébuchon-Da Fonseca A; Gavaret M; Carron R; Bartolomei F; Liégeois-Chauvel C; Régis J; Chauvel P; Alario FX; Bénar CG Neuroimage; 2014 Oct; 99():548-58. PubMed ID: 24862073 [TBL] [Abstract][Full Text] [Related]
9. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Jannesari M; Saeedi A; Zare M; Ortiz-Mantilla S; Plenz D; Benasich AA Brain Struct Funct; 2020 Apr; 225(3):1169-1183. PubMed ID: 32095901 [TBL] [Abstract][Full Text] [Related]
10. Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity. Arviv O; Goldstein A; Shriki O J Neurosci; 2015 Oct; 35(41):13927-42. PubMed ID: 26468194 [TBL] [Abstract][Full Text] [Related]
11. Application of HFO and scaling analysis of neuronal oscillations in the presurgical evaluation of focal epilepsy. Shi LJ; Li CC; Zhang XT; Lin YC; Wang YP; Zhang JC Brain Res Bull; 2024 Sep; 215():111018. PubMed ID: 38908759 [TBL] [Abstract][Full Text] [Related]
12. Universal organization of resting brain activity at the thermodynamic critical point. Yu S; Yang H; Shriki O; Plenz D Front Syst Neurosci; 2013; 7():42. PubMed ID: 23986660 [TBL] [Abstract][Full Text] [Related]
13. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infant. Jannesari M; Saeedi A; Zare M; Ortiz-Mantilla S; Plenz D; Benasich AA Brain Struct Funct; 2019 Sep; 224(7):2453-2465. PubMed ID: 31267171 [TBL] [Abstract][Full Text] [Related]
14. Avalanche dynamics of human brain oscillations: relation to critical branching processes and temporal correlations. Poil SS; van Ooyen A; Linkenkaer-Hansen K Hum Brain Mapp; 2008 Jul; 29(7):770-7. PubMed ID: 18454457 [TBL] [Abstract][Full Text] [Related]
15. Critical dynamics of endogenous fluctuations predict cognitive flexibility in the Go/NoGo task. Simola J; Zhigalov A; Morales-Muñoz I; Palva JM; Palva S Sci Rep; 2017 Jun; 7(1):2909. PubMed ID: 28588303 [TBL] [Abstract][Full Text] [Related]
16. Virtual localization of the seizure onset zone: Using non-invasive MEG virtual electrodes at stereo-EEG electrode locations in refractory epilepsy patients. Juárez-Martinez EL; Nissen IA; Idema S; Velis DN; Hillebrand A; Stam CJ; van Straaten ECW Neuroimage Clin; 2018; 19():758-766. PubMed ID: 30009129 [TBL] [Abstract][Full Text] [Related]
17. Neuronal avalanches and time-frequency representations in stimulus-evoked activity. Arviv O; Goldstein A; Shriki O Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749 [TBL] [Abstract][Full Text] [Related]
18. Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study. Bénar CG; Grova C; Jirsa VK; Lina JM J Comput Neurosci; 2019 Aug; 47(1):31-41. PubMed ID: 31292816 [TBL] [Abstract][Full Text] [Related]
19. Modular co-organization of functional connectivity and scale-free dynamics in the human brain. Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM Netw Neurosci; 2017; 1(2):143-165. PubMed ID: 29911674 [TBL] [Abstract][Full Text] [Related]
20. Deviations from Critical Dynamics in Interictal Epileptiform Activity. Arviv O; Medvedovsky M; Sheintuch L; Goldstein A; Shriki O J Neurosci; 2016 Nov; 36(48):12276-12292. PubMed ID: 27903734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]