These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25834105)

  • 1. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo.
    Sridharan A; Nguyen JK; Capadona JR; Muthuswamy J
    J Neural Eng; 2015 Jun; 12(3):036002. PubMed ID: 25834105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.
    Zhang H; Patel PR; Xie Z; Swanson SD; Wang X; Kotov NA
    ACS Nano; 2013 Sep; 7(9):7619-29. PubMed ID: 23930825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A response surface model predicting the in vivo insertion behavior of micromachined neural implants.
    Andrei A; Welkenhuysen M; Nuttin B; Eberle W
    J Neural Eng; 2012 Feb; 9(1):016005. PubMed ID: 22156141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically-compliant intracortical implants reduce the neuroinflammatory response.
    Nguyen JK; Park DJ; Skousen JL; Hess-Dunning AE; Tyler DJ; Rowan SJ; Weder C; Capadona JR
    J Neural Eng; 2014 Oct; 11(5):056014. PubMed ID: 25125443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.
    Li Y; Deng J; Zhou J; Li X
    J Mater Sci Mater Med; 2016 Nov; 27(11):163. PubMed ID: 27646405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Modeling of Magnitude and Location of Brain Micromotion Induced Strain for Intracortical Implants.
    Al Abed A; Amatoury J; Khraiche M
    Front Neurosci; 2021; 15():727715. PubMed ID: 35069092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex.
    Subbaroyan J; Martin DC; Kipke DR
    J Neural Eng; 2005 Dec; 2(4):103-13. PubMed ID: 16317234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization.
    Khilwani R; Gilgunn PJ; Kozai TD; Ong XC; Korkmaz E; Gunalan PK; Cui XT; Fedder GK; Ozdoganlar OB
    Biomed Microdevices; 2016 Dec; 18(6):97. PubMed ID: 27778225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.
    Anand S; Kumar SS; Muthuswamy J
    Biomed Microdevices; 2016 Aug; 18(4):72. PubMed ID: 27457752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion.
    Fekete Z; Németh A; Márton G; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2015 Feb; 26(2):70. PubMed ID: 25631267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe.
    Welkenhuysen M; Andrei A; Ameye L; Eberle W; Nuttin B
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3250-9. PubMed ID: 21896383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S; Vezin P; Palierne JF
    J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain micromotion around implants in the rodent somatosensory cortex.
    Gilletti A; Muthuswamy J
    J Neural Eng; 2006 Sep; 3(3):189-95. PubMed ID: 16921202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.